
The .NET Framework:
What is it and How to Use it?

Drs.ir. Vadim V. Zaytsev

19 October 2004

History en Future of Cobol

• The lecture in week 45 will be cancelled!

• Replacement lecture will take place as a part of a bigger

event:

• A symposium in honour of Wim Ebbinkhuijsen: 22 October

2004 (Friday), 13:00, Auditorium. Please read information

at http://www.automatiseringgids.nl/events/default.asp?

page=hfcobol and then register via a.luisman@wkths.nl (or

contact Ralf).

1

http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
mailto:a.luisman@wkths.nl

Technical issues

• Up-to-date information about the course: requirements,

suggestions, slides, papers, rescheduling issues, . . . —

http://www.cs.vu.nl/~ralf/oo/lecture-2004/

• These slides incorporate some of the work by Ralf Lämmel,

Manuel Costa, Kai Rannenberg, Erik Meijer, Damien

Watkins, Hanspeter Mössenböck & probably some others.

2

http://www.cs.vu.nl/~ralf/oo/lecture-2004/

What is .NET?

• Microsoft .NET is a set of Microsoft software technologies

for connecting information, people, systems, and devices. It

enables a high level of software integration through the use

of Web services—small, discrete, building-block applications

that connect to each other as well as to other, larger

applications over the Internet. (c© M$ website)

• A development platform: interfaces, components and tools

to develop software. The biggest change in the Microsoft

platform since Windows NT replaced DOS. (c© Manuel

Costa)

3

The components of Microsoft .NET-
connected software

4

.NET framework principles

• Make Internet-scale distributed computing ubiquitous

• Seamless integration of multiple applications and devices

• Deliver software as a service

• Independent of any programming language

5

.NET framework as a framework

System.Web System.Windows

Web Forms Web Services Controls Drawing

ASP.NET Application Services Windows Application Services

System Base Framework

ADO.NET XML SQL Threading

Net IO Security ServiceProc

Common Language Run-time

Type System Metadata Execution

6

Metadata

• Metadata generation is both mandatory and automatic

• Metadata is the essential bridge between language compilers
and the execution system

• Metadata annotations are extensible via Attributes (explicitly
specified by a programmer):

[STAThread]
static void Main()
{

Application.Run(new MainForm());
}

7

Common Language Run-time (CLR)

• Multi-language support

• Common type system

• Simplified deployment

• Code Access Security

8

Corporation support

• Rich class libraries

• Powerful and consistent programming model

• Focus on code, not plumbing

• Tools

• Support for design-time functionality

• Debugging, profiling, instrumentation support

9

CLR design goals

• Simplify application development

• Simplify deployment and management

• Provide a robust and secure execution environment

• Support multiple programming languages

10

Simplified development (example)

Windows API (C++)

HWND hwndMain = CreateWindowEx(
0, "MainWinClass", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, hInstance, NULL);

ShowWindow(hwndMain, SW_SHOWDEFAULT);
UpdateWindow(hwndMain);

.NET Framework (C#)

Form form = new Form();
form.Text = "Main Window";
form.Show();

11

Simplified development

• Organisation — code organised in hierarchical namespaces

and classes.

• Unified type system — everything is an object, no variants,

one string type, all character data is Unicode.

• Component-oriented — properties, methods, events and

attributes are first class constructs.

12

Simplified deployment
& management

• Assembly — a unit of deployment, versioning and security;

very much like a DLL, but self-describing.

• Zero-impact install — applications and components can be

shared or private.

• Side-by-side execution — multiple versions of the same

component can coexist, even in the same process.

13

Robust & secure

• Automatic lifetime management — all .NET objects are

garbage collected; no stray pointers, no circular references.

• Code correctness and type safety — IL can be verified

to guarantee type-safety; no unsafe casts, no uninitialised

variables, no out-of-bounds array indexing.

• Evidence-based security — based on origin of code as well

as user; extensible permissions possible.

14

Multi-language friendly

• All features of the .NET platform available to any .NET

programming language.

• Application components can be written in multiple

languages.

• Debuggers, profilers, code coverage analysers, . . . work for

all languages.

• Available: (on the next slide)

15

Available languages under .NET

A# (Ada), Abstract IL (IL+OCaml), Active Oberon,
ActiveState Python, ASNA Visual RPG, BETA, Boo (python),
C#, Cω, Component Pascal, Delphi 2005, Delta Forth .NET,
DotLisp, Dyalog APL, Eiffel, F# (ML+Caml), Glasgow Haskell,
Haskell.NET, Hugs98 (Haskell), HotDog Scheme, IL (a.k.a.
MSIL, CIL), ILX (functional IL), IronPython, JScript.NET
(ECMAScript), Lahey Fortran, Lexico (educational), Mercury
(Prolog, kinda), Mondrian, MonoLOGO, Nemerle (functional
C#), NetCOBOL, Net Express (MicroFocus COBOL), Oberon,
PerlNET, Python, Salford FTN 95 (Fortran), Scheme.NET, S#
(Smalltalk 98), #Smalltalk, SML.NET (Standard ML), Tachy
(Scheme-like), TMT .NET Pascal, Visual Basic, Visual C++,
Visual J# (Java), Zonnon (Oberon trend).

This is fourty six!

16

http://www.usafa.af.mil/dfcs/bios/mcc_html/a_sharp.html
http://research.microsoft.com/projects/ilx/absil.aspx
http://caml.inria.fr/
http://www.oberon.ethz.ch/oberon.net/
http://aspn.activestate.com/ASPN/Python/
http://www.asna.com/pages/products_NET_AVR.aspx
http://www.pervasive.dk/projects/langInter/langInter_summary.htm
http://boo.codehaus.org/
http://msdn.microsoft.com/vcsharp/team/language/default.aspx
http://research.microsoft.com/comega/
http://www.citi.qut.edu.au/research/plas/projects/cp_files/ComponentPascal.html
http://www.borland.com/delphi/
http://www.codeproject.com/dotnet/dforthnet.asp
http://dotlisp.sourceforge.net/dotlisp.htm
http://www.dyalog.com/new10/msnet.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/pdc_eiffel.asp
http://research.microsoft.com/projects/ilx/fsharp.aspx
http://haskell.cs.yale.edu/ghc/
http://php.cin.ufpe.br/~haskell/haskelldotnet/
http://galois.com/~sof/hugs98.net/
http://hotdog.sourceforge.net/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://research.microsoft.com/projects/ilx/ilx.aspx
http://ironpython.com/
http://www.gotdotnet.com/team/jscript/
http://www.lahey.com/
http://riosur.net/
http://www.cs.mu.oz.au/research/mercury/
http://www.mondrian-script.org/mondrian/index.html
http://monologo.sourceforge.net/
http://nemerle.org/
http://www.netcobol.com/products/windows/netcobol.html
http://www.microfocus.com/products/NetExpress/WhatsNew.asp
http://www.bluebottle.ethz.ch/oberon.net/
http://aspn.activestate.com/ASPN/NET/index
http://starship.python.net/crew/mhammond/dotnet/
http://www.salfordsoftware.co.uk/compilers/ftn95/
http://www.cs.indiana.edu/~jgrinbla/
http://www.smallscript.org/
http://www.refactory.com/Software/SharpSmalltalk/
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://www.kenrawlings.com/pages/Tachy
http://www.tmt.com/net.htm
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/visualc/
http://msdn.microsoft.com/vjsharp/
http://www.bluebottle.ethz.ch/Zonnon/

Example: Visual C++ (Managed)

#using <mscorlib.dll>
using namespace System;
__gc public class HelloWorldCPP
{

public:
void SayHelloCPP()
{

Console::WriteLine("Hello World from C++!");
}

};

17

Example: Visual Basic

Imports System
Imports HelloWorldCPP

Public Class HelloWorldVB
Inherits HelloWorldCPP

Sub SayHelloVB()
Console.WriteLine ("Hello World from Visual Basic!")

End Sub
End Class

18

Example: COBOL

CLASS-ID. HelloWorldCOB INHERITS HelloWorldVB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS HelloWorldVB AS "HelloWorldVB"
OBJECT.
PROCEDURE DIVISION.
METHOD-ID. SayHelloCOB.
PROCEDURE DIVISION.

DISPLAY "Hello World from COBOL!".
END METHOD SayHelloCOB.
END OBJECT.
END CLASS HelloWorldCOB.

19

Example: C#

using System;
class HelloWorldCS: HelloWorldCOB
{

public void SayHelloCS()
{

String message = "Hello World from C#!";
Console.WriteLine(message);

}
public static int Main()
{

HelloWorldCS h = new HelloWorldCS();
h.SayHelloCPP();
h.SayHelloVB();
h.SayHelloCOB();
h.SayHelloCS();
return 0;

}
}

20

.NET availability

• Standardised by ECMA-335: CLI, ECMA-334: C#, ISO/IEC

23271:2003 IT–CLI, ISO/IEC 23270:2003 IT–C#.

• .NET Framework SDK — essential part, around 100 Mb,

free to download, just CLR and basic tools.

• Visual Studio .NET — huge (all meanings), not quite free:

$749–$2499.

• Rotor: SSCLI — shared source, free to download, working

on Windows XP (of course!), FreeBSD, Mac OS X 10.2.

• Mono — comprehensive open source development platform

based on the .NET framework, sponsored by Novell, free to

download, works on Linux, not completed yet.

21

http://msdn.microsoft.com/net/ecma/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&DisplayLang=en
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/net/sscli/
http://www.mono-project.com/about/index.html
http://www.mono-project.com/about/index.html

break

22

Security: Policy

• Defining security goals

• What do I want to protect?

• From whom?

• How do I express it?

• How do I know it is right?

• Different parties have different interests and different

(maybe conflicting) policies

• Approaches:

• Policy languages

• User Interfaces Tools

23

As it is usually done: plumbing

• Implementing security functionality

• Assuming I have a policy, how do I implement it?

(Application security)

• How do I enable implementation of the widest range of

policies?

(OS/Network security)

• Dealing with bugs

• How do I minimize security holes in the plumbing?

• How do I cope with them?

• How do I recover from their effect?

• Approaches include: filters, firewalls, code checkers,

audition tools.

24

Distributed security

• The trust model is fantastically complex (partial or limited

trust defined by policies, contracts, liability, educated

guessing).

• The “Trusted Computing Base” is exposed (includes

interfaces between the software and the system, network,

user and other code)

• Security usually contradicts reliability or performance.

25

.NET framework

Programming Language

ASP.NET Applications WinForms

Base Class Library

Common Language Run-time

OS Application Services

Communication Protocols

XML, SOAP, (S)HTTP, (S)FTP, SSL/TLS, . . .

+IDE “Visual Studio .NET”

26

CLR security design goals

• Robust security system for partially-trusted, mobile code

• OS security is based on user rights

• CLR security (on top of OS security) gives rights to code

• Make it easier for. . .

• Developers to write secure applications (standard

libraries implement security checks for exposed resources;

easy to perform security checks in user code)

• Administrators to express their policies (fine-grained

authorisation models; system is extensible)

• End users to work securely (no run-time security decisions

are to be made on the fly)

27

The four scenarios

Trusted user Untrusted user

Trusted should-be usual limited database

code situation access

Untrusted virus or another crystal clear.

code malicious software get out!

28

Permission

• A permission is a set (or subset) of capabilities

• The right to access a particular resource
• All permissions implement ∪, ∩, and ⊂ operations

• Permission types are orthogonal (a demand for a permission
of type A must be satisfied with a grant of a permission of
type A)

• Permissions protect resources

• Assemblies need permissions

29

Policy

• Policy determines the set of permissions to grant to code
based on evidence

• Classic trust management problem

• Solution?

• End users write programs to express their policies?

• Base on administrator’s experience (evidence)?

• . . . ?

30

How it is done in .NET

[SendMailPermission(
SecurityAction.Demand,
Sender="kair@microsoft.com")]

public static void SendMessage(...)
{

...
}

• Programmer defines SendMailPermission and decides when to

demand it of callers

• Administrator decides what code should be granted

SendMailPermission

31

Policy evaluation

• process of determining the set of permissions to grant to

code based on

• Evidence known about that code

• Requests from the code

extract info grant for once

Evidence

(DS, URL, Zone) (rules of trust)

Policy

(trust of code)

Grant

Managed code

request

32

Notions of code group and policy
level

• Code group groups assemblies that should be granted similar

permission

• Code groups are organised into a hierarchy

• Membership for each assembly is evaluated w.r.t. evidence

• A tree of code groups is a policy level.

• The permissions granted by a policy level for a given set of

evidence are determined by evaluating the root code group

of the tree.

33

Sample policy level

ITPM

Zone:
Internet

Site:
vu.nl

Zone:
Local Intranet

Publisher:
Admin

Site:
localweb

Publisher:
X

All code

Name:
RE

Name:

34

Evidence

• Evidence is the input to policy evaluation

• For example: information about assembly (strong names,

publisher identity, original location), third-party certifications

• Evidence is extensible (any object can be a piece of evidence)

Assembly input: permission requests

• Minimum (must have to run)

• Optional (would like to have to run)

• Refuse (never need)

35

C#

• Made by Anders Hejlsberg, Scott Wiltamuth, Peter Golde

• 70% Java, 10% C++, 5% Visual Basic, 15% new (claimed)

• Mostly C++, Deplhi, Modula, Smalltalk

• Syntactically almost Java.

• Different points of view, see e.g. C#: A language alternative

or just J--?.

36

http://www.javaworld.com/javaworld/jw-11-2000/jw-1122-csharp1_p.html
http://www.javaworld.com/javaworld/jw-11-2000/jw-1122-csharp1_p.html

C# features

• Object-orientation (no multiple inheritance)

• Interfaces

• Exceptions (+checking)

• Threads

• Namespaces (independent of file structure)

• Strong typing, unified type system

• Garbage collection and destructors

• Reflection, dynamic loading of code

• Method / operator overloading

• Pointer arithmetic in unsafe code

• Reference and output parameters, variable number thereof

• Comments in XML

37

C# features (cont’d)

• Objects on the stack (structs)

• Rectangular arrays

• Enumerations

• Visibility modifiers

• goto

• Versioning

• Component-based programming (properties, events)

• Delegates

• Indexers

• foreach statement

• Boxing/unboxing

• Attributes (metadata)

38

C# future features

• Generics (next step from C++ templates)

• λ-functions as “anonymous methods”

• Type inference!!

• Iterators (foreach+IEnumerator)

• Partial types

• Static classes

• Property accessor accessibility

• #pragma warning

• Nullable types

39

The End.

40

