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History en Future of Cobol

• The lecture in week 45 will be cancelled!

• Replacement lecture will take place as a part of a bigger

event:

• A symposium in honour of Wim Ebbinkhuijsen: 22 October

2004 (Friday), 13:00, Auditorium. Please read information

at http://www.automatiseringgids.nl/events/default.asp?

page=hfcobol and then register via a.luisman@wkths.nl (or

contact Ralf).

1

http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
http://www.automatiseringgids.nl/events/default.asp?page=hfcobol
mailto:a.luisman@wkths.nl


Technical issues

• Up-to-date information about the course: requirements,

suggestions, slides, papers, rescheduling issues, . . . —

http://www.cs.vu.nl/~ralf/oo/lecture-2004/

• These slides incorporate some of the work by Ralf Lämmel,

Manuel Costa, Kai Rannenberg, Erik Meijer, Damien

Watkins, Hanspeter Mössenböck & probably some others.
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What is .NET?

• Microsoft .NET is a set of Microsoft software technologies

for connecting information, people, systems, and devices. It

enables a high level of software integration through the use

of Web services—small, discrete, building-block applications

that connect to each other as well as to other, larger

applications over the Internet. ( c© M$ website)

• A development platform: interfaces, components and tools

to develop software. The biggest change in the Microsoft

platform since Windows NT replaced DOS. ( c© Manuel

Costa)
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The components of Microsoft .NET-
connected software
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.NET framework principles

• Make Internet-scale distributed computing ubiquitous

• Seamless integration of multiple applications and devices

• Deliver software as a service

• Independent of any programming language
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.NET framework as a framework

System.Web System.Windows

Web Forms Web Services Controls Drawing

ASP.NET Application Services Windows Application Services

System Base Framework

ADO.NET XML SQL Threading

Net IO Security ServiceProc

Common Language Run-time

Type System Metadata Execution
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Metadata

• Metadata generation is both mandatory and automatic

• Metadata is the essential bridge between language compilers
and the execution system

• Metadata annotations are extensible via Attributes (explicitly
specified by a programmer):

[STAThread]
static void Main()
{

Application.Run(new MainForm());
}
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Common Language Run-time (CLR)

• Multi-language support

• Common type system

• Simplified deployment

• Code Access Security
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Corporation support

• Rich class libraries

• Powerful and consistent programming model

• Focus on code, not plumbing

• Tools

• Support for design-time functionality

• Debugging, profiling, instrumentation support
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CLR design goals

• Simplify application development

• Simplify deployment and management

• Provide a robust and secure execution environment

• Support multiple programming languages
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Simplified development (example)

Windows API (C++)

HWND hwndMain = CreateWindowEx(
0, "MainWinClass", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, hInstance, NULL);

ShowWindow(hwndMain, SW_SHOWDEFAULT);
UpdateWindow(hwndMain);

.NET Framework (C#)

Form form = new Form();
form.Text = "Main Window";
form.Show();
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Simplified development

• Organisation — code organised in hierarchical namespaces

and classes.

• Unified type system — everything is an object, no variants,

one string type, all character data is Unicode.

• Component-oriented — properties, methods, events and

attributes are first class constructs.
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Simplified deployment
& management

• Assembly — a unit of deployment, versioning and security;

very much like a DLL, but self-describing.

• Zero-impact install — applications and components can be

shared or private.

• Side-by-side execution — multiple versions of the same

component can coexist, even in the same process.
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Robust & secure

• Automatic lifetime management — all .NET objects are

garbage collected; no stray pointers, no circular references.

• Code correctness and type safety — IL can be verified

to guarantee type-safety; no unsafe casts, no uninitialised

variables, no out-of-bounds array indexing.

• Evidence-based security — based on origin of code as well

as user; extensible permissions possible.
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Multi-language friendly

• All features of the .NET platform available to any .NET

programming language.

• Application components can be written in multiple

languages.

• Debuggers, profilers, code coverage analysers, . . . work for

all languages.

• Available: (on the next slide)
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Available languages under .NET

A# (Ada), Abstract IL (IL+OCaml), Active Oberon,
ActiveState Python, ASNA Visual RPG, BETA, Boo (python),
C#, Cω, Component Pascal, Delphi 2005, Delta Forth .NET,
DotLisp, Dyalog APL, Eiffel, F# (ML+Caml), Glasgow Haskell,
Haskell.NET, Hugs98 (Haskell), HotDog Scheme, IL (a.k.a.
MSIL, CIL), ILX (functional IL), IronPython, JScript.NET
(ECMAScript), Lahey Fortran, Lexico (educational), Mercury
(Prolog, kinda), Mondrian, MonoLOGO, Nemerle (functional
C#), NetCOBOL, Net Express (MicroFocus COBOL), Oberon,
PerlNET, Python, Salford FTN 95 (Fortran), Scheme.NET, S#
(Smalltalk 98), #Smalltalk, SML.NET (Standard ML), Tachy
(Scheme-like), TMT .NET Pascal, Visual Basic, Visual C++,
Visual J# (Java), Zonnon (Oberon trend).

This is fourty six!
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Example: Visual C++ (Managed)

#using <mscorlib.dll>
using namespace System;
__gc public class HelloWorldCPP
{

public:
void SayHelloCPP()
{

Console::WriteLine("Hello World from C++!");
}

};
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Example: Visual Basic

Imports System
Imports HelloWorldCPP

Public Class HelloWorldVB
Inherits HelloWorldCPP

Sub SayHelloVB()
Console.WriteLine ("Hello World from Visual Basic!")

End Sub
End Class
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Example: COBOL

CLASS-ID. HelloWorldCOB INHERITS HelloWorldVB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.

CLASS HelloWorldVB AS "HelloWorldVB"
OBJECT.
PROCEDURE DIVISION.
METHOD-ID. SayHelloCOB.
PROCEDURE DIVISION.

DISPLAY "Hello World from COBOL!".
END METHOD SayHelloCOB.
END OBJECT.
END CLASS HelloWorldCOB.
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Example: C#

using System;
class HelloWorldCS: HelloWorldCOB
{

public void SayHelloCS()
{

String message = "Hello World from C#!";
Console.WriteLine(message);

}
public static int Main()
{

HelloWorldCS h = new HelloWorldCS();
h.SayHelloCPP();
h.SayHelloVB();
h.SayHelloCOB();
h.SayHelloCS();
return 0;

}
}
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.NET availability

• Standardised by ECMA-335: CLI, ECMA-334: C#, ISO/IEC

23271:2003 IT–CLI, ISO/IEC 23270:2003 IT–C#.

• .NET Framework SDK — essential part, around 100 Mb,

free to download, just CLR and basic tools.

• Visual Studio .NET — huge (all meanings), not quite free:

$749–$2499.

• Rotor: SSCLI — shared source, free to download, working

on Windows XP (of course!), FreeBSD, Mac OS X 10.2.

• Mono — comprehensive open source development platform

based on the .NET framework, sponsored by Novell, free to

download, works on Linux, not completed yet.
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break
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Security: Policy

• Defining security goals

• What do I want to protect?

• From whom?

• How do I express it?

• How do I know it is right?

• Different parties have different interests and different

(maybe conflicting) policies

• Approaches:

• Policy languages

• User Interfaces Tools
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As it is usually done: plumbing

• Implementing security functionality

• Assuming I have a policy, how do I implement it?

(Application security)

• How do I enable implementation of the widest range of

policies?

(OS/Network security)

• Dealing with bugs

• How do I minimize security holes in the plumbing?

• How do I cope with them?

• How do I recover from their effect?

• Approaches include: filters, firewalls, code checkers,

audition tools.
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Distributed security

• The trust model is fantastically complex (partial or limited

trust defined by policies, contracts, liability, educated

guessing).

• The “Trusted Computing Base” is exposed (includes

interfaces between the software and the system, network,

user and other code)

• Security usually contradicts reliability or performance.
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.NET framework

Programming Language

ASP.NET Applications WinForms

Base Class Library

Common Language Run-time

OS Application Services

Communication Protocols

XML, SOAP, (S)HTTP, (S)FTP, SSL/TLS, . . .

+IDE “Visual Studio .NET”

26



CLR security design goals

• Robust security system for partially-trusted, mobile code

• OS security is based on user rights

• CLR security (on top of OS security) gives rights to code

• Make it easier for. . .

• Developers to write secure applications (standard

libraries implement security checks for exposed resources;

easy to perform security checks in user code)

• Administrators to express their policies (fine-grained

authorisation models; system is extensible)

• End users to work securely (no run-time security decisions

are to be made on the fly)
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The four scenarios

Trusted user Untrusted user

Trusted should-be usual limited database

code situation access

Untrusted virus or another crystal clear.

code malicious software get out!
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Permission

• A permission is a set (or subset) of capabilities

• The right to access a particular resource
• All permissions implement ∪, ∩, and ⊂ operations

• Permission types are orthogonal (a demand for a permission
of type A must be satisfied with a grant of a permission of
type A)

• Permissions protect resources

• Assemblies need permissions
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Policy

• Policy determines the set of permissions to grant to code
based on evidence

• Classic trust management problem

• Solution?

• End users write programs to express their policies?

• Base on administrator’s experience (evidence)?

• . . . ?
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How it is done in .NET

[SendMailPermission(
SecurityAction.Demand,
Sender="kair@microsoft.com")]

public static void SendMessage(...)
{

...
}

• Programmer defines SendMailPermission and decides when to

demand it of callers

• Administrator decides what code should be granted

SendMailPermission
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Policy evaluation

• process of determining the set of permissions to grant to

code based on

• Evidence known about that code

• Requests from the code

extract info grant for once

Evidence

(DS, URL, Zone) (rules of trust)

Policy

(trust of code)

Grant

Managed code

request
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Notions of code group and policy
level

• Code group groups assemblies that should be granted similar

permission

• Code groups are organised into a hierarchy

• Membership for each assembly is evaluated w.r.t. evidence

• A tree of code groups is a policy level.

• The permissions granted by a policy level for a given set of

evidence are determined by evaluating the root code group

of the tree.
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Sample policy level

ITPM

Zone:
Internet

Site:
vu.nl

Zone:
Local Intranet

Publisher:
Admin

Site:
localweb

Publisher:
X

All code

Name:
RE

Name:
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Evidence

• Evidence is the input to policy evaluation

• For example: information about assembly (strong names,

publisher identity, original location), third-party certifications

• Evidence is extensible (any object can be a piece of evidence)

Assembly input: permission requests

• Minimum (must have to run)

• Optional (would like to have to run)

• Refuse (never need)

35



C#

• Made by Anders Hejlsberg, Scott Wiltamuth, Peter Golde

• 70% Java, 10% C++, 5% Visual Basic, 15% new (claimed)

• Mostly C++, Deplhi, Modula, Smalltalk

• Syntactically almost Java.

• Different points of view, see e.g. C#: A language alternative

or just J--?.
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C# features

• Object-orientation (no multiple inheritance)

• Interfaces

• Exceptions (+checking)

• Threads

• Namespaces (independent of file structure)

• Strong typing, unified type system

• Garbage collection and destructors

• Reflection, dynamic loading of code

• Method / operator overloading

• Pointer arithmetic in unsafe code

• Reference and output parameters, variable number thereof

• Comments in XML
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C# features (cont’d)

• Objects on the stack (structs)

• Rectangular arrays

• Enumerations

• Visibility modifiers

• goto

• Versioning

• Component-based programming (properties, events)

• Delegates

• Indexers

• foreach statement

• Boxing/unboxing

• Attributes (metadata)
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C# future features

• Generics (next step from C++ templates)

• λ-functions as “anonymous methods”

• Type inference!!

• Iterators (foreach+IEnumerator)

• Partial types

• Static classes

• Property accessor accessibility

• #pragma warning

• Nullable types
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The End.
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