
Vadim Zaytsev, SWAT, CWI
 2012

Notation-Parametric
Grammar Recovery

Twelfth International Workshop on Language
Descriptions, Tools and Applications (LDTA 2012)

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Notation-Parametric
Grammar Recovery

• Existing software artefacts with grammar knowledge

• Grammar recovery

• Problem: how to reuse grammar artefacts that are
written in different notations

• EDD = EBNF Dialect Definition

• edd2rsc and Grammar Hunter

• Software Language Processing Suite

http://slps.sf.net/
http://slps.sf.net/

Grammar
recovery

progress and
timeline

Message Sequence Charts
• ITU Z.120, 1996

• Microsoft Word document
→ PostScript document

• PostScript document
→ ASCII file

• ASCII + extract.perl
→ BNF rules

• …14 manual changes…

• Corrected BNF rules + script
→ HTML

Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

Message Sequence Charts
• ITU Z.120, 1996

• Microsoft Word document
→ PostScript document

• PostScript document
→ ASCII file

• ASCII + extract.perl
→ BNF rules

• …14 manual changes…

• Corrected BNF rules + script
→ HTML

• Browse all the productions!
Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://web.archive.org/web/19970625172502/http://www7.informatik.uni-erlangen.de/~nsfaltin/mscbnf/extract.perl
http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

COBOL (dialects)

v/d Brand, Sellink, Verhoef, Obtaining a COBOL Grammar from Legacy Code for Reengineering Purposes, ASF+SDF’97.

http://www.cs.vu.nl/~x/coboldef/coboldef.html
http://www.cs.vu.nl/~x/coboldef/coboldef.html

COBOL (dialects)
• Code → strip → reformulate
→ disambiguate → …

• ANSI COBOL 85 standard

• 1100 production rules + MSc
student → SDF

• Grammar
→ restricted grammar

• Restricted grammar
→ retokenised grammar

• Cleaned up grammar can
parse cleaned up code

v/d Brand, Sellink, Verhoef, Obtaining a COBOL Grammar from Legacy Code for Reengineering Purposes, ASF+SDF’97.

grammar

Restricted
grammar

666-code

Cobol code

Grammar manipulationCode manipulation

Reduced
666-code

Reformulation

Lex. disamb.

Unification

666-code
disambiguated

Lexically
Unified

grammar

Reduction

Retokenization

Retokenized

Stripping
+extensions

ANSI standard

http://www.cs.vu.nl/~x/coboldef/coboldef.html
http://www.cs.vu.nl/~x/coboldef/coboldef.html

Switching System Language
• Ericsson Reengineering Center:

HTML files

• HTML files → syntax rules

• SBNF parser + syntax rules
→ grammar in SDF?

• …naming convention
violations…

• …non-matching brackets…

• …interactive grammar hacking
in MetaEnv…

• SBNF’ parser + syntax rules’
→ grammar in SDF!

Sellink, Verhoef, Development, Assessment, and Reengineering of Language Descriptions, CSMR 2000.

http://www.cs.vu.nl/~x/cale/
http://www.cs.vu.nl/~x/cale/

Programming Language for EXchanges

Lämmel, Verhoef, Cracking the 500 Language Problem, IEEE Software, 2001.

7 8 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

problem; this impediment became known
as the 500-Language Problem.

In 1998, we realized that we had discov-
ered a breakthrough in solving the 500LP—
so we had something to offer regarding the
Y2K problem. We immediately informed all
the relevant Y2K solution providers and peo-
ple concerned with the Y2K awareness cam-
paign. In answer to our emails, we received a
boilerplate email from Ed Yourdon explain-
ing that the 500LP was a major impediment
to solving the Y2K problem (which we knew,
of course). Ed was apparently so good at cre-
ating awareness that this had backfired on
him: he got 200 to 300 messages a day with
Y2K questions and was no longer able to
read, interpret, and answer his email other
than in “write-only” mode. Although he pre-
sumably missed our input, his response re-
garding the 500LP is worth quoting:

I recognize that there is always a chance that
someone will come up with a brilliant solu-
tion that everyone else has overlooked, but at
this late date, I think it’s highly unlikely. In
particular, I think the chances of a “silver bul-
let” solution that will solve ALL y2k problems
is virtually zero. If you think you have such a
solution, I have two words for you: embedded
systems. If that’s not enough, I have three
words for you: 500 programming languages.
The immense variety of programming lan-
guages (yes, there really are 500!), hardware
platforms, operating systems, and environ-
mental conditions virtually eliminates any
chance of a single tool, method, or technique
being universally applicable.

The number 500 should be taken poeti-
cally, like the 1,000 in the preserving
process for so-called 1,000-year-old eggs,
which last only 100 days. For a start, we

feature
Cracking the
500-Language Problem

Ralf Lämmel and Chris Verhoef, Free University of Amsterdam

Parser
implementation
effort dominates
the construction
of software
renovation tools
for any of the
500+ languages
in use today. The
authors propose
a way to rapidly
develop suitable
parsers: by
stealing the
grammars.
They apply this
approach to
two nontrivial,
representative
languages, PLEX
and VS Cobol II.

A
t least 500 programming languages and dialects are available in
commercial form or in the public domain, according to Capers
Jones.1 He also estimates that corporations have developed some
200 proprietary languages for their own use. In his 1998 book on

estimating Year 2000 costs, he indicated that systems written in all 700 lan-
guages would be affected.2 His findings inspired many Y2K whistle-blowers
to characterize this situation as a major impediment to solving the Y2K

programming languages

http://www.few.vu.nl/~x/500/500.html
http://www.few.vu.nl/~x/500/500.html

Programming Language for EXchanges

• 20 sublanguages (sectors)

• 63 Mb of source code
→ search for BNF

• BNF in comments + 6 parsers
→ BNF

• BNF → SDF

• Lexer → SDF

• …combine…

• Parse 8 MLOC in 2 weeks
Lämmel, Verhoef, Cracking the 500 Language Problem, IEEE Software, 2001.

stance). Figure 2 shows the first two cases—
the third is just a combination. If you start
with a hard-coded grammar, you must re-
verse-engineer it from the handwritten code.
Fortunately, the comments of such code of-
ten include BNF rules (Backus Naur Forms)
indicating what the grammar comprises.
Moreover, because compiler construction is
well-understood (there is a known reference
architecture), compilers are often imple-
mented with well-known implementation al-
gorithms, such as a recursive descent algo-
rithm. So, the quality of a hard-coded parser
implementation is usually good, in which
case you can easily recover the grammar
from the code, the comments, or both. Ex-
cept in one case, the Perl language,14 the
quality of the code we worked with was al-
ways sufficient to recover the grammar.

If the parser is not hard-coded, it is gen-
erated (the BNF branch in Figure 2), and
some BNF description of it must be in the
compiler source code. So, with a simple tool
that parses the BNF itself, we can parse the
BNF of the language that resides in the com-
piler in BNF notation, and then extract it.

When the compiler source code is not
accessible (we enter the Language Refer-
ence Manual diamond in Figure 2), either a
reference manual exists or not. If it is avail-
able, it could be either a compiler vendor
manual or an official language standard.
The language is explained either by exam-

ple, through general rules, or by both ap-
proaches. If a manual uses general rules, its
quality is generally not good: reference
manuals and language standards are full of
errors. It is our experience that the myriad
errors are repairable. As an aside, we once
failed to recover a grammar from the man-
ual of a proprietary language for which the
compiler source code was also available
(so this case is covered in the upper half of
Figure 2). As you can see in the coverage
diagram, we have not found low-quality
language reference manuals containing
general rules for cases where we did not
have access to the source code. That is, to
be successful, compiler vendors must pro-
vide accurate and complete documenta-
tion, even though they do not give away
their compilers’ source code for economic
reasons. We discovered that the quality of
those manuals is good enough to recover
the grammar. This applies not only to com-
piler-vendor manuals but also to all kinds
of de facto and official language standards.

Unusual languages rarely have high-quality
manuals: either none exists (for example, if
the language is proprietary) or the company
has only a few customers. In the proprietary
case, a company is using its in-house lan-
guage and so has access to the source code;
in the other case, outsiders can buy the code
because its business value is not too high.
For instance, when Wang went bankrupt, its

8 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

No

Yes

Yes

Start

Hard-coded
parser

Recover the
grammar

Recover the
grammar

BNF

No cases known

Yes

One case:
perl

No

Language
reference
manual?

No

General
rules

Recover the
grammar

One case:
RPG

Constructions
by example

Yes

No cases
known

No

Compiler
sources?

Quality?

Quality?

Figure 2. Coverage diagram for grammar stealing.

http://www.few.vu.nl/~x/500/500.html
http://www.few.vu.nl/~x/500/500.html

IBM VS COBOL II
• Language reference
→ raw grammar

• Non-executable source
⇒ static errors

• ??? → lexical syntax

• Test-driven correction &
completion

• … → beautification →
modularisation → …

• Disambiguation

• Adaptation
Lämmel, Verhoef, Semi-automatic Grammar Recovery, SP&E, 2001.

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2001; 12:1–6 Prepared using speauth.cls [Version: 2000/03/16 v2.12]

Semi-automatic Grammar
Recovery
R. Lämmel , , , C. Verhoef , ,

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
Division of Mathematics and Computer Science, Vrije University Amsterdam, De Boelelaan 1081a, 1081

HV Amsterdam, The Netherlands

SUMMARY

We propose an approach to the construction of grammars for existing languages. The main characteristic
of the approach is that the grammars are not constructed from scratch but they are rather recovered by
extracting them from language references, compilers, and other artifacts. We provide a structured process
to recover grammars including the adaptation of raw extracted grammars and the derivation of parsers.
The process is applicable to possibly all existing languages for which business critical applications exist. We
illustrate the approach with a non-trivial case study. Using our process and some basic tools, we constructed
in a few weeks a complete and correct VS COBOL II grammar specification for IBM mainframes. In
addition, we constructed a parser for VS COBOL II, and were the first to publish a (web-enabled) grammar
specification so that others can use this result to construct their own grammar-based tools for VS COBOL II
or derivatives.

KEY WORDS: Reengineering, System renovation, Software renovation factories, Grammar engineering,
Grammar recovery, Grammar reverse engineering, VS COBOL II, COBOL

INTRODUCTION

Languages play a crucial role in software engineering. Conservative estimates indicate that there are
at least 500 languages and dialects available in commercial form or in the public domain. On top of
that, Jones estimates that some 200 proprietary languages have been developed by corporations for
their own use [1, p. 321]. If we put the age of software engineering at 50 years, this implies that on the
average, more than once a month a new language is born somewhere (14 times per year). To illustrate
that this estimate is conservative, compare this to Weinberg who estimated as early as in 1971 that in

Correspondence to: Division of Mathematics and Computer Science, Vrije University Amsterdam, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands
E-mail: ralf@cs.vu.nl
E-mail: x@cs.vu.nl
Contract/grant sponsor: The first author received partial support from the Netherlands Organization for Scientific Research
(NWO) under the Generation of Program Transformation Systems project.

Received 1 December 2000
Copyright c 2001 John Wiley & Sons, Ltd. Revised 30 July 2001

Accepted 7 August 2001

http://www.cs.vu.nl/~x/ge/ge.html
http://www.cs.vu.nl/~x/ge/ge.html

ECMA/ISO C♯
• PDF → text

• Text → LLL

• LLL + FST + GDK → LLL

• %redefine … %to …

• LLL + GDK → SDF

• SDF + tool? → HTML

Zaytsev, Correct C# Grammar too Sharp for ISO, GTTSE 2005.

Correct C# Grammar too Sharp for ISO

Vadim Zaytsev

Vrije Universiteit Amsterdam, The Netherlands,
vadim@cs.vu.nl

Introduction. The most used programming language nowadays is COBOL.
At the Free Unversity in Amsterdam we have done numerous transformations on
COBOL, parsed and transformed millions of lines of code. COBOL is standard-
ised, but vendors usually deviate from the standard, making their own dialects.
In order to parse code, we need a working grammar, which should be derived
from the compiler documentation. However, documentation is never complete
nor error-free, and special techniques are needed to obtain correct grammars:
grammar recovery and grammar (re)engineering. One can argue whether this
happens because of COBOL decades-long evolution and legacy.

Recently we started thinking about transforming C# code, too. C# is quite
different from COBOL, it is a very sharp modern language, the latest big ac-
complishment in programming languages design. C# was produced by a big
corporation and submitted as a specification to both ECMA International1 and
ISO2. C# compiler provided by Microsoft claims to fully implement the stan-
dard. Thus, one might think that this standard is of much better quality that
COBOL’s, making it easier to use it in parser construction. This research piece
shows that it is not.

Specification quality: being sharp upon C#. The C# specification is
almost 500 pages long, it is written in English, explains all language features in
detail, and has an appendix with the formal language definition in a BNF-like
form (the same formulae are used throughout the text). One might suppose it
would be very easy to take that grammar and transform it into a working parser
(which is needed for our re-engineering purposes). Unfortunately, it did not work
out that easy: the C# specification’s formal contents turned out to be unusable
“as is”. This means: no compiler. Actually, not even one line of code could have
been parsed with that specification—so inconsistent was it.

In order to get to the parser, we took the BNF grammar apart from the
text and put it into GDK3, which is expected to generate SDF formulae from it
(for use in the ASF+SDF Meta-Environment). This process showed that some
BNF formulae are informally described (“separated by”, “one of the follow-
ing”), some are redundant (occur more than once, some sorts have identical
definitions), some incorrect (e.g., forgotten “optional” marks), some inconsis-
tent (formulae given in the text and in the appendix differ), some non-intuitive
(e.g., expressions unintelligibly presented without priorities made implicit), some
idiosyncratic (omnipresent YACCified constructions), some ambiguous (the
1

European Computer Manufacturers Association. Here the ECMA-334 is meant.
2

International Organization for Standardization. C# is ISO/IEC 23270:2003.
3

Grammar Deployment Kit by C. Verhoef, R. Lämmel and J. Kort.

http://grammarware.net/writes/index.html%23Too-Sharp2005
http://grammarware.net/writes/index.html%23Too-Sharp2005

Fortran, Modula, BNF, EBNF, YACC

• SDF → BGF

• ANTLR → BGF

• DCG → BGF

• TXL → BGF

• LLL → BGF

• … … … → BGF

Lämmel, Zaytsev, An Introduction to Grammar Convergence, IFM 2009, LNCS 5423.

An Introduction to Grammar Convergence

Ralf Lämmel and Vadim Zaytsev

Software Languages Team, The University of Koblenz-Landau, Germany

Abstract. Grammar convergence is a lightweight verification method for estab-
lishing and maintaining the correspondence between grammar knowledge in-
grained in all kinds of software artifacts, e.g., object models, XML schemas,
parser descriptions, or language documents. The central idea is to extract gram-
mars from diverse software artifacts, and to transform the grammars until they
become syntactically identical. The present paper introduces and illustrates the
basics of grammar convergence.

1 Introduction

Grammar convergence is a lightweight verification method for establishing and main-
taining the correspondence between grammar knowledge ingrained in all kinds of soft-
ware artifacts. In fact, it is an integrated method that works purposely across different
programming and specification languages as well as different approaches to software
development. Here are few use cases for grammar convergence:

– Given are Java classes for a specific domain, say financial exchange. There is also
an independently designed XML schema that is meant to standardize that domain.
One needs to establish the agreement between the object model and the schema.

– Given is a compiler for a programming language, say gcc for C++. There is also
a reverse/re- engineering tool for the same language based on a different parsing
infrastructure. One needs to establish that both tools agree on the language at hand.

– Given is an XML-data binding technology. One needs to test the (customizable)
mapping from XML schemas to object models. The oracle for testing relies on
establishing an agreement between XML schemas and object models.

– Given are 3 versions of the Java language specification, with 2 grammars per ver-
sion. One needs to align grammars per version and express the evolution from ver-
sion to version. (We have done such a case study; see the authors’ website.)

The central idea of grammar convergence is to extract grammars from diverse software
artifacts, and to transform the grammars until they become syntactically identical. In
more detail, the method entails the following core ingredients:

1. A unified grammar format that effectively supports abstraction from specialities or
idiosyncrasies of the grammars as they occur in software artifacts in practice.

2. A grammar extractor for each kind of artifact – e.g., a Java extractor maps Java
classes to the unified grammar format.

3. A grammar comparer that determines and reports grammar differences in the sense
of deviations from syntactical equality (if any).

http://userpages.uni-koblenz.de/~laemmel/convergence/
http://userpages.uni-koblenz.de/~laemmel/convergence/

Java 1.0, 1.2, 5.0
• HTML → BNF

• HTML + very robust scanner
→ something

• Something + heuristics
→ something better

• Something better + initial
correction → grammar

• Grammar + transformations
→ anything

Lämmel, Zaytsev, Recovering Grammar Relationships for the JLS, SCAM 2009, WSR 2010, SQJ 19:2.

1 23

Software Quality Journal

ISSN 0963-9314
Volume 19
Number 2

Software Qual J (2011)
19:333-378
DOI 10.1007/
s11219-010-9116-5

Recovering grammar relationships for the
Java Language Specification

http://arxiv.org/abs/1008.4188
http://arxiv.org/abs/1008.4188

ISO: C, C++, C♯
• PDF → TXT

• Assume the formalism
→ preliminary grammar

• Apply heuristics
→ automated corrections

• Manual analysis → post-
extraction transformations

• Automated analyses → …

• … → SLPS Zoo
Zaytsev, Recovery, Convergence and Documentation of Languages, VU, 2010.

http://slps.sf.net/zoo
http://slps.sf.net/zoo
http://grammarware.net/writes/index.html%23Zaytsev-Thesis2010
http://grammarware.net/writes/index.html%23Zaytsev-Thesis2010

Ada, C++, Eiffel, Modula,
MediaWiki, LLL, ISO EBNF

• Grammar Hunter

• Grammar text + EBNF dialect
definition → BGF

• Works in steps

• Needs XBGF to make a complete
framework.

• Solves two problems:

• deal with large range of
metasyntax dialects

• disregard typographic (& other)
errors

Zaytsev, MediaWiki Grammar Recovery, Wikimania 2011, CoRR.

MediaWiki Grammar Recovery

Vadim Zaytsev, vadim@grammarware.net
SWAT, CWI, NL

July 26, 2011

1 Introduction

Wiki is the simplest online database that could possibly work [41]. It usually

takes a form of a website or a webpage where the presentation is predefined to

some extent, but the content can be edited by a subset of users. The editing

ideally does not require any additional software nor extra knowledge, takes place

in a browser and utilises a simple notation for markup. Currently there are more

than a hundred of such notations, varying slightly in concrete syntax but mostly

providing the same set of features for emphasizing fragments of text, making

tables, inserting images, etc [10]. The most popular notation of all is the one

of MediaWiki engine, it is used on Wikipedia, Wikia and numerous Wikimedia

Foundation projects.

In order to facilitate development of new wikiware and to simplify main-

tenance of existing wikiware, one can rely on methods and tools from soft-

ware language engineering. It is a field that emerged in recent years, gen-

eralising theoretical and practical aspects of programming languages, markup

languages, modelling languages, data definition languages, transformation lan-

guages, query languages, application programming interfaces, software libraries,

etc [15, 23, 25, 70] and believed to be the successor for the object-oriented

paradigm [14]. The main instrument of software language engineering is on dis-

ciplined creation of new domain specific languages with emphasis on extensive

automation. Practice shows that automated software maintenance, analysis,

migration and renovation deliver considerable benefits in terms of costs and

human effort compared to alternatives (manual changes, legacy rebuild, etc),

especially on large scale [11, 61, 65]. However, automated methods do require

special foundation for their successful usage.

Wikiware (wiki engines, parsers, bots, etc) is a specific case of grammar-

ware (parsers, compilers, browsers, pretty-printers, analysis and manipulation

tools, etc) [25, 75]. The most straightforward definition of grammarware can

be of software which input and/or output must belong to a certain language

(i.e., can be specified implicitly or explicitly by a formal grammar). An op-

erational grammar is needed to parse the code, to get it from a textual form

that the programmers created into a specialised generational and transforma-

tional infrastructure that usually utilises a tree-like internal format. In spite

1

ar
X

iv
:1

10
7.

46
61

v1
 [

cs
.M

M
]

23
 Ju

l 2
01

1

http://arxiv.org/abs/1107.4661
http://arxiv.org/abs/1107.4661

EBNF
Dialect

Definition

EBNF Dialect Definition

• List of indicators

• Together form a notation specification

Zaytsev, What Have We Done About the Unnecessary Diversity of Notation for Syntactic Definitions, SAC/PL 2012.

program::=
 function+;
function::=
 name argument* “=” expr?;

http://grammarware.net/writes/index.html%23BNF-WAS-HERE2012
http://grammarware.net/writes/index.html%23BNF-WAS-HERE2012

LLL in LLL
specification : rule+;
rule : ident ":" disjunction ";";
disjunction : {conjunction "|"} +;
conjunction : term+;
term : basis repetition?;
basis : ident
 | literal
 | alternation
 | group
 ;
repetition : "+" | "*" | "?";
alternation : "{" basis basis "}" repetition;
group : "(" disjunction ")" ;

LLL in EDD
defining metasymbol : definition separator

metasymbol |

terminator metasymbol ; postfix optionality
metasymbol ?

postfix star metasymbol * postfix plus metasymbol +

start terminal metasymbol “ end terminal metasymbol “

start group metasymbol (end group metasymbol)
start separator list star

metasymbol { end separator list star
metasymbol }*

start separator list plus
metasymbol { end separator list plus

metasymbol }+

Semi-automatic
recovery

Semi-automatic recovery

• Assume the absence of (notational) errors

• Obtain a notation specification

• Generate a parser specification (“grammar for grammars”)

• Fix errors interactively as parsing errors

• Effectiveness depends on IDE support

LLL in Rascal
module LLL
import util::IDE; // needed only for advanced IDE support (see last two lines)
start syntax LLLGrammar = LLLLayoutList LLLProduction* LLLLayoutList;
syntax LLLProduction = LLLNonterminal ":" {LLLDefinition "|"}+ ";";
syntax LLLDefinition = LLLSymbol+;
syntax LLLSymbol
 = @category="Identifier" nonterminal: LLLNonterminal
 | @category="Constant" terminal: LLLTerminal
 | group: "(" LLLDefinition ")"
 | optional: LLLSymbol "?"
 | star: LLLSymbol "*"
 | plus: LLLSymbol "+"
 | sepliststar: "{" LLLSymbol LLLSymbol "} *"
 | seplistplus: "{" LLLSymbol LLLSymbol "} +";
lexical LLLTerminal = "\"" LLLTerminalSymbol* "\"";
lexical LLLTerminalSymbol = ![\"];
lexical LLLNonterminal = [A-Za-z_01-9\-/]+ !>> [A-Za-z_01-9\-/];
layout LLLLayoutList = LLLLayout* !>> [\t-\n \r \] !>> "#";
lexical LLLLayout = [\t-\n \r \] | LLLComment ;
lexical LLLComment = @category="Comment" "#" ![\n]* [\n];
Tree getLLL(str s,loc z) = parse(#LLLGrammar,z);
public void registerLLL() = registerLanguage("LLL","lll",getLLL);

Automatic
recovery

Automatic recovery

• Assume the notational errors will happen

• Obtain a specification of the correct notation

• Perform robust parsing with it

• Infer heuristics and encode them in a tool

• Recover from all errors automatically

• Once finished, the grammar can be analysed, corrected etc

Grammar Hunter
Block 1: Selective line reading.

• Reads the file, fetches grammar fragments, applies line continuation
rules to relevant lines, filters out comments, delivers the list of
characters.

Block 2: Composition of tokens from characters.

• Transforms the list of characters into the list of tokens, while taking
quoting rules into account.

Block 3: Tokens classification.

• Classifies each token as a terminal, nonterminal or a metasymbol.

Block 4: Token groups normalisation.

• Converts postfix/prefix to confix, delivers the list of grammar rules.

Block 5: Context-dependent reconsideration.

• Performs correction heuristics: decomposes and assembles symbols,
rebalances symmetric metasymbols, ignores negligible leftovers.

Block 1:
Selective line reading

Formal Parameters
Every function declaration includes a formal parameter list, which consists ...
The following can be simplified to:
formalParameterList
 : '(' normalFormalParameters (‘,’ optionalFormalParameters)? ')'
 ;
optionalFormalParameters
: restFormalParameter |
 namedFormalParameters
;
normalFormalParameters:
 normalFormalParameter (',' normalFormalParameter)*
 ;
Positional Formals
A positional formal parameter is a simple variable declaration.

Bracha, The Dart Programming Language Specification, version 0.05.

http://www.dartlang.org/docs/spec/
http://www.dartlang.org/docs/spec/

Block 2:
Composition of tokens from chars

<code>continu</code><i>e

S<i>witchBlockStatementGroups</i>

<page-first-char> ::= <ucase-letter> | <digit> | <uscore> | ...?

Primary.new Identifier (ArgumentListopt) ClassBodyopt

Block 3:
Tokens classification

Line = PlainText { PlainText } { " " { " " } PlainText { PlainText } } ;

nonterminal
symbol

terminal
symbol

metasymbol

Block 4:
Token groups normalisation
• Only terminator metasymbol is known

• the less reliable is the notation, the more errors we get

foo ::= bar iwx fwc ysk ;
uwr ::= wzx abq iin ync
hnl ::= pjx hwz gwo pai ;;
djr ::= bcx opv nfx rcj
bwf ::= tbv kle gbx xik;

Block 4:
Token groups normalisation
• Only defining metasymbol is known

• better because left hand side is a nonterminal (CFG)

foo = bar iwx fwc ysk
uwr = wzx abq “iin” = ync
hnl = = pjx “hwz” gwo pai
djr = bcx opv nfx rcj
bwf = tbv kle gbx “xik”

Block 4:
Token groups normalisation
• Both terminator and defining metasymbols are known

• additional validation leads to stability

foo = bar iwx fwc ysk ;
uwr ⩴ wzx abq “iin” = ync ;
hnl = = pjx “hwz” gwo pai ;;
djr = bcx opv nfx rcj
bwf = tbv kle gbx “xik” ;

Block 4:
Token groups normalisation
• Neither terminator nor defining metasymbols are known

• infer by frequency analysis of tokens

foo ::= bar iwx fwc ysk ;
uwr ::= wzx abq iin ync ;
hnl ::= pjx hwz gwo pai ;
djr ::= bcx opv nfx rcj ;
bwf ::= tbv kle gbx xik;

VariableDeclaratorId:
 Identifier
 VariableDeclaratorId []

TypeArgument:
 Type
 "?" [("extends" | "super" ")" "Type" "]"

Block 5:
Context-driven reconsideration

Conclusion

• A victory for grammar recovery

• Syntactic notation specification

• Semi-automatic:

• generate a parser spec from a notation spec

• work interactively

• Automatic:

• encode heuristics and let them loose

• Beyond (E)BNF?

Thank you!

grammarware.net
slps.sf.net

http://grammarware.net
http://grammarware.net
http://slps.sf.net/
http://slps.sf.net/

