
Vadim Zaytsev, SWAT, CWI
 2012

A Tale of Two Grammars

Vadim Zaytsev, SWAT, CWI
 2012

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Programmable
Grammar

Transformations

Grammar refactoring example

ClassBodyDeclarations:
 ClassBodyDeclaration
ClassBodyDeclarations:
 ClassBodyDeclarations ClassBodyDeclaration
ClassBody:
 "{" ClassBodyDeclarations? "}"

deyaccify(ClassBodyDeclarations);
inline(ClassBodyDeclarations);
massage(
 ClassBodyDeclaration+? ,
 ClassBodyDeclaration*);

BGF (read2)

XBGF (grammar refactoring)

ClassBody:
 "{" ClassBodyDeclaration* "}"

Grammar extension example

ClassModifier:
 "public"
 "protected"
 "private"
 "abstract"
 "static"
 "final"
 "strictfp"

unite(InterfaceModifier, Modifier);
unite(ConstructorModifier, Modifier);
unite(MethodModifier, Modifier);
unite(FieldModifier, Modifier);
… … …

BGF (read2)

XBGF (grammar optimisation)

FieldModifier:
 "public"
 "protected"
 "private"
 "static"
 "final"
 "transient"
 "volatile"

MethodModifier:
 "public"
 "protected"
 "private"
 "abstract"
 "static"
 "final"
 "synchronized"
 "native"
 "strictfp"

Grammar revision example

Expression2:
 Expression3 Expression2Rest ?
Expression2Rest:
 (Infixop Expression3)*
Expression2Rest:
 Expression3 "instanceof" Type

project(
 Expression2Rest:
 < Expression3 > "instanceof" Type
);

BGF (impl2, impl3)

XBGF (grammar correction)

Grammar
Convergence

Claims we all hear

• “This compiler implements that language”

• “This appendix contains an [insert parsing technique
here] optimised grammar of the language”

• “This grammarware produces data suitable to use with
that grammarware”

• “These are 100 implementations of one language”

• “This language is a subset/superset of that language”

• “This version of a compiler is backward compatible”

Different implementations of the same language
(parsers, data models, etc.)

Grammar convergence

Alternative scenario

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Different versions of a language as documented by specifications

Transform until equal

A ::= X Y Z;
B ::= X Y Z;

A ::= X Y Z;
A ::= X G Z;

Guided
Grammar

Convergence

Guided convergence

Abstract Normal Form

• lack of selectable (named) subexpressions

• lack of labels for production rules

• lack of terminal symbols

• maximal outward factoring of inner choices

• lack of horizontally-defined nonterminals

• the set of starting symbols equals the set of non-leaf tops

Abstract Normal Form

• lack of selectable (named) subexpressions

• lack of labels for production rules

• lack of terminal symbols

• maximal outward factoring of inner choices

• lack of horizontally-defined nonterminals

• the set of starting symbols equals the set of non-leaf tops

Production signature

which means that it is both unnecessary to verticalise them and impossible to
do so (the XBGF processor would report a vacuous transformation).

An example of conversion to ANF can be found on Figure 3. The original
grammar, shown on the left, contains selectors, terminals and horizontal rules,
while the normalised one, shown on the right, does not. It is not easy to express
in EBNF, but the normalised grammar also has one starting symbol, namely
program.

3 Production signatures

Given two expressions, it is not easy to determine their equivalence. Pure struc-
tural equivalence (with equality of all corresponding leaves) guarantees any other
equivalence. However, it is also very strict and thus does not occur that often.
We will now define equivalence based on production signatures, or prodsig-
equivalence.

Consider a nonterminal n defined as expression e. Assuming e is in ANF, it
can only be of limited form:

Expression Production signature

x nonterminal, x �= n 1
n recursion 0
s? optional subexpression, x �= n ?
n? optional recursion ⊙
s+ iteration, x �= n, one or more +
n+ iterative recursion, one or more ⊕
s∗ iteration, x �= n, zero or more ∗
n∗ iterative recursion, zero or more ⊗
α “any character” metasymbol α

(e1, . . .) sequence sorted concatenation of prodsigs

Other symbols are impossible: terminal symbols and selectors are not present
in ANF, ε (empty sequence) cannot be encountered as a part of a sequence1,
ϕ (failure symbol) also cannot be encountered as a part of a sequence2, inner
choices are also impossible to find since they can only reside inside iteration or
optionality constructs, and we do no look inside them. We also assume an empty
prodsig if e is ε or ϕ itself. Sorting the signatures of subexpressions in a sequence
is needed because we want to automatically detect permutations as well.

In our prototype implementation3, the prodsigs are deconstructible: i.e., each
element can be traced back to the expression that spawned it. On the pages of
this paper, we omit such details for the sake of simplicity and readability.

As an example, consider the following mismatch:

1 The definition of ε immediately implies that it can be removed from any sequence
as a part of normalisation.

2 The definition of ϕ makes any sequence that directly contains ϕ equivalent to ϕ.
3 The prototype implementation is available as topics/convergence/guided at
SLPS [12].

Computation of prodsigs
Master grammar Rascal

1

1

1⊕

001

000

expr:

STR

expr:

INT

expr:

STR expr
+

expr:

expr operator expr

expr:

expr expr expr

001

1⊕

000

0

1

1

Expr:

Expr Ops Expr

Expr:

Name Expr
+

Expr:

Expr Expr Expr

Expr:

Expr

Expr:

Name

Expr:

Int

expr from the master grammar has the following prodsig: 1/1/1⊕/001/000.
On the other side, Expr from the Rascal specification of FL, has the follow-
ing prodsig: 001/1⊕/000/0/1/1. While matching production rules directly is too
complicated and demanding, matching prodsigs is relatively easy: 000, 001 and
1⊕ immediately yield unique matches, which help to choose the right matches
for two rules with prodsig 1, which leaves only one production rule on the Rascal
side. However, we know that the prodsig of 0 indicates a reflexive chain produc-
tion rule, which is a remaining implementation detail and can be harmlessly
removed from the abstract syntax definition without any loss of generality.

On some occasions we also employ name-aware prodsigs that work with one
expression and group prodsig elements by nonterminal names. For example, exp
op exp have a prodsig of 11/1, which differs from the prodsig of exp arg mod
(1/1/1) or exp exp exp (111).

4 Convergence of the FL grammarbase

Let us take several implementations of the Factorial Language (FL), a DSL
used for teaching purposes and for proofs of concepts. Figure 4 presents its full
convergence tree with 6 nodes (antlr, dcg, sdf, xsd, om, jaxb) taken from [5],
3 extra nodes (txl, ecore, ecore2) taken from [9] and one new node (rascal)
included in this paper. All implementations are freely available for inspection as
topics/fl at SLPS [12].

We deliberately do not opt for having one grammar as a running example
in order to present all kinds of problems that arise with the automation of
guided grammar convergence. Such a running example would obfuscate the fact
that the main reason behind having such mismatches is that they are occurring
in grammars extracted from sources written in different paradigms. Instead,
we choose for one convergence graph and choose exemplary fragments from all
grammars in it.

Case
Studies

Case study: JLS

?

JLS convergence results
30

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5114 2847 6774 10721 1639 3082 30859

Number of transformations 67 290 111 387 544 77 135 1611

◦ Semantics-preserving (§4.2.2) 45 231 80 275 381 31 78 1121

◦ Semantics-increasing/-decreasing 22 58 31 102 150 39 53 455

◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase (§4.2.1) 1 — — 15 24 11 14 65

◦ Known bugs — — — 1 11 — 4 16

◦ Post-extraction — — — 7 8 7 5 27

◦ Initial correction 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425

◦ Extension (§4.2.3) — 17 26 — — 31 38 112

◦ Relaxation (§4.2.4) 18 39 5 75 112 — 2 251

◦ Correction (§4.2.5) 3 3 — 22 27 4 3 62

Table 6 Transformation of the JLS grammars — effort metrics and categorization

Table 6 measures the extraction effort and the involved grammar transformations. This

information was obtained in an automated manner but it relies on some amount of semantic

annotation of the transformations for the classifications and phases.

The number of transformations directly refers to the number of applications of transfor-
mation operators. As one can see from Table 7, 33 different operators are used in the JLS

case; most of them were introduced in §4. About three quarters of the transformations are

semantics-preserving. The remaining quarter is mainly dedicated to semantics-increasing or

-decreasing transformations with only 2% left for semantics-revising transformations.

In Table 6, one can observe that relaxation transformations indeed occur when a more

readable and a more implementable grammar are converged. Further, one can observe that

the overall transformation effort is particularly high for jls12 — which signifies the fact

(already mentioned above) that impl1 and impl2 appear to be different developments. Fi-

nally, we have made an effort to incorporate Sun’s bug list into the picture (see “Known

bugs”). We note that some of the known bugs equally occur in both the more readable and

the more implementable grammar, in which case we cannot even discover them by grammar

convergence.

In general, we can say that grammar convergence techniques are useful for creation,

maintenance and evolution of language documentation. However, any set of guidelines that

we can produce at the moment will be questionable without proper amount of experience

gathered and several successful projects of substantial size, such as van den Brand et al

(1997). Thus, the issue will not be pursued in the paper, and the interested reader is referred

to Klusener and Zaytsev (2005) instead.

5 Related work

We organize the related work discussion in the following manner: i) grammar recovery (in-

cluding grammar inference); ii) programmable grammar transformations; iii) other grammar

engineering work; iv) coupled transformations of grammar- or schema- or metamodel-like

artifacts and grammar- or schema- or metamodel-dependent artifacts; v) comparison (in-

cluding matching) of schemas or metamodels.

Convergence reveals
relationships

31

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36

◦ reroot 2 — — 2 2 2 1 9

◦ unfold 1 10 8 11 13 2 3 48

◦ fold 4 11 4 11 13 2 5 50

◦ inline 3 67 8 71 100 — 1 250

◦ extract — 17 5 18 30 — 5 75

◦ chain 1 — 2 — — 1 4 8

◦ massage 2 13 — 15 32 5 3 70

◦ distribute 3 4 2 3 6 — — 18

◦ factor 1 7 3 5 24 3 1 44

◦ deyaccify 2 20 — 25 33 4 3 87

◦ yaccify — — — — 1 — 1 2

◦ eliminate 1 8 1 14 22 — — 46

◦ introduce — 1 30 4 13 3 34 85

◦ import — — 2 — — — 1 3

◦ vertical 5 7 7 8 22 5 8 62

◦ horizontal 4 19 5 17 31 4 4 84

◦ add 1 14 13 7 20 28 20 103

◦ appear — 8 11 8 25 2 17 71

◦ widen 1 3 — 1 8 1 3 17

◦ upgrade — 8 — 14 20 2 2 46

◦ unite 18 2 — 18 21 5 4 68

◦ remove — 10 1 11 18 — 1 41

◦ disappear — 7 4 11 11 — — 33

◦ narrow — — 1 — 4 — — 5

◦ downgrade — 2 — 8 3 — — 13

◦ define — 6 — 4 9 1 6 26

◦ undefine — 3 — 5 3 — — 11

◦ redefine — 3 — 8 7 6 2 26

◦ inject — — — 2 4 — 1 7

◦ project — 1 — 1 2 — — 4

◦ replace 3 1 2 3 6 1 1 17

◦ unlabel — — — — — — 2 2

Table 7 XBGF operators usage for JLS convergence.

5.1 Grammar recovery

The main objective of the JLS study is to discover grammar relationships, but an “important

byproduct” of the study is a consolidated Java grammar. Hence, this particular instance of

grammar convergence (perhaps more than grammar convergence in general) relates strongly

to other efforts on grammar recovery. This topic has seen substantial interest over the last

10 years because of the need for grammars in various software engineering scenarios. We

categorize this work in the following.

Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of documen-

tation that contains a raw grammar, which can be extracted, and then to improve the raw

grammar through parser-based testing until all sources of interest can be parsed (such as test

programs, or entire software projects) (Sellink and Verhoef, 2000; Lämmel and Verhoef,

2001a,b; de Jonge and Monajemi, 2001; Alves and Visser, 2009). The actual improvement

steps may be carried out manually (Sellink and Verhoef, 2000; de Jonge and Monajemi,

Guided convergence of FL
antlr dcg sdf rascal txl ecore ecore2 xsd jaxb om

One to many nonterminals − − − − − + − + − −
Nominal mismatches + + + + + + + + + +

More liberal definitions − − − − − − − − + +

Superfluous nonterminals + + + + + − − − − −
Disconnected nonterminals − − − − − − − + + +

Maximum number of versions 1 1 1 2 2 4 1 1 1 1

Chain production rules + − − − − + + + + +

Permutations − − − − − ± + + + +

Reflexive chain rules + + + + + + − − − −
Undefined matched as... ε ε ε ε ε ϕ ε ε ε ε
Aggregation − − − − − + − − − −
Layered definitions + + − − − − − − − −
Meaningful chain rules − − − − − + − − − −

Table 1. Different issues of guided grammar convergence in the case study:

columns correspond to the grammars of FL, rows in the upper part relate to

subsections of §4, the bottom part is for special cases discussed in §5.

– Allow more liberal constructs than the master grammar

– Consider unmatched nonterminals as matched to nothing

– Unchain nonterminals to try more variants

– Be aware of permutations while matching prodsigs

– Remove reflexive chain production rules

– Match undefined nonterminals to ϕ, ε or built-ins

Table 1 summarises the issues solved and unsolved automatically during our

case study. We see that some issues arise almost everywhere, like nominal nonter-

minal mismatches or matching undefined nonterminals as ε, while others persist
only in a specific group of grammars. For example, superfluous nonterminals

in FL always refer to function-separating newlines, so they need to be explic-

itly discarded only for concrete syntax definitions. Disconnected nonterminals

unsurprisingly occur in grammars that are extracted from generated artefacts

(they are framework traces like Visitor or ObjectFactory). Permutations are

commonly found in abstract syntax definitions.

The most problematic grammar turned out to be the one extracted from the

handcrafted Ecore model, and the most problematic feature for guided grammar

convergence was layered definitions with explicitly hardcoded priorities. We do

not have enough data to draw any conclusions about whether this was due to

the peculiar structure of the grammars themselves or about how common such

problems will occur in other case studies. However, at this point we can already

conclude that guided grammar convergence is at least as efficient as normal
grammar convergence, and it both employs more automation and gives more

opportunities for further automation.

The guided grammar convergence tool for grammars in ANF, implemented

as a search-based algorithm with matching rules from §4 and prodsig-equivalence

Bibliography

Resources
• Lämmel, Zaytsev, An Introduction to Grammar Convergence,

iFM 2009, LNCS 5423.

• Lämmel, Zaytsev, Reverse Engineering Grammar Relationships,
WSR 2010.

• Zaytsev, Language Convergence Infrastructure, GTTSE 2009,
LNCS 6491.

• Lämmel, Zaytsev, Recovering Grammar Relationships for the
JLS, SCAM 2009, SQJ 19:2, CoRR abs/1008.4188.

• Zaytsev, Guided Grammar Convergence, draft.

http://grammarware.net/writes/index.html%23Convergence2009
http://grammarware.net/writes/index.html%23Convergence2009
http://grammarware.net/writes/index.html%23REGR2010
http://grammarware.net/writes/index.html%23REGR2010
http://grammarware.net/writes/index.html%23LCI2011
http://grammarware.net/writes/index.html%23LCI2011
http://grammarware.net/writes/index.html%23JLS-SQJ2011
http://grammarware.net/writes/index.html%23JLS-SQJ2011
http://grammarware.net/writes/index.html%23JLS-SQJ2011
http://grammarware.net/writes/index.html%23JLS-SQJ2011
http://arxiv.org/abs/1008.4188
http://arxiv.org/abs/1008.4188
http://grammarware.net/writes/index.html%23Guided2012
http://grammarware.net/writes/index.html%23Guided2012

Thank you!

grammarware.net
slps.sf.net

http://grammarware.net
http://grammarware.net
http://slps.sf.net/
http://slps.sf.net/

