A Tale of Two Grammars

Vadim Zaytsev, SWAT, CWI

Programmable Grammar Transformations

Grammar refactoring example

BGF (read2)

ClassBody:

"{" ClassBodyDeclaration * "}"

ClassBodyDeclarations: ClassBodyDeclaration ClassBodyDeclarations: ClassBodyDeclarations ClassBodyDeclaration ClassBody:

"{" ClassBodyDeclarations? "}"

XBGF (grammar refactoring) deyaccify(ClassBodyDeclarations); inline(ClassBodyDeclarations); massage(ClassBodyDeclaration+?, ClassBodyDeclaration*);

Grammar extension example

BGF (read2)

ClassModifier: "public" "protected" "private" "abstract" "static" "final" "strictfp" FieldModifier: "public" "protected" "private" "static" "final" "transient" "volatile" MethodModifier: "public" "protected" "private" "abstract" "static" "final" "synchronized" "native" "strictfp"

XBGF (grammar optimisation)

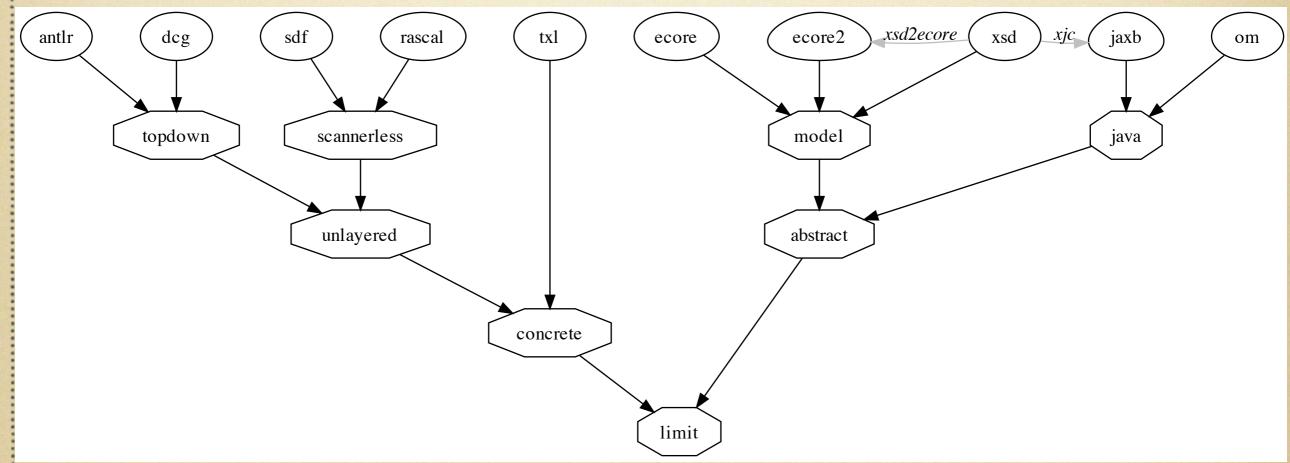
unite(InterfaceModifier, Modifier); unite(ConstructorModifier, Modifier); unite(MethodModifier, Modifier); unite(FieldModifier, Modifier);

Grammar revision example

BGF (*impl2*, *impl3*)

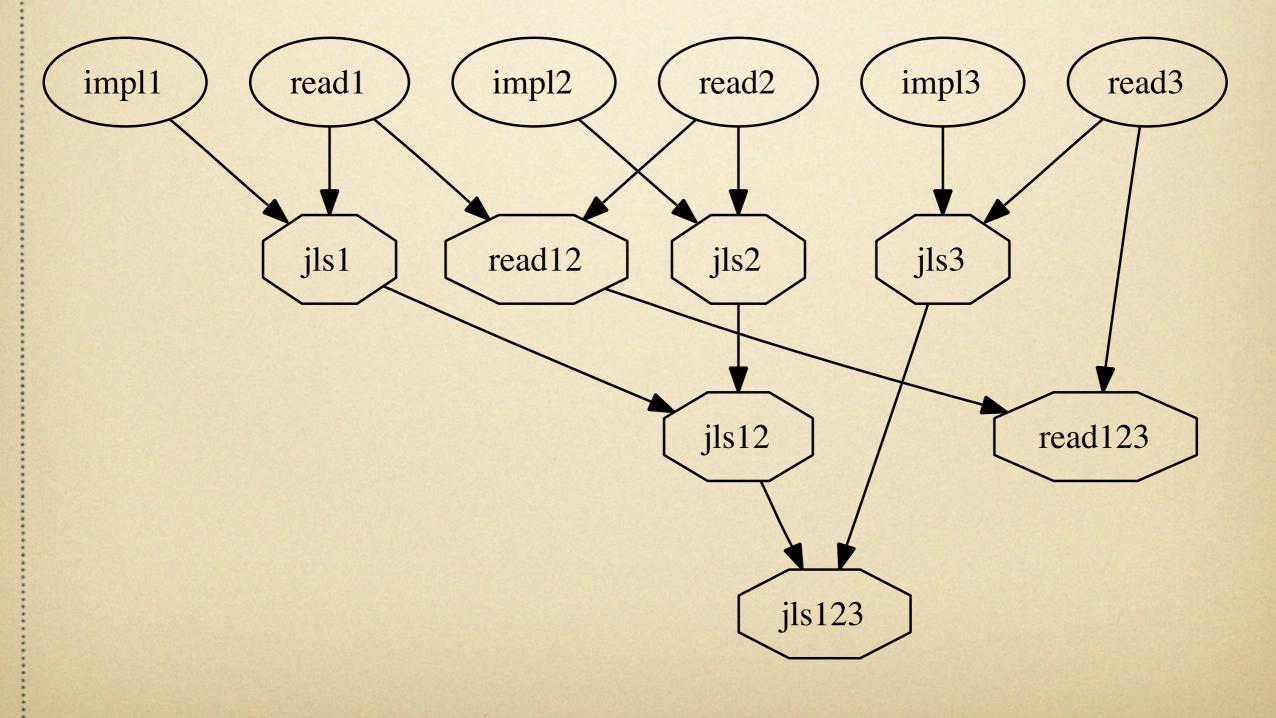
Expression2: Expression3 Expression2Rest? Expression2Rest: (Infixop Expression3)* Expression2Rest: Expression3 "instanceof" Type

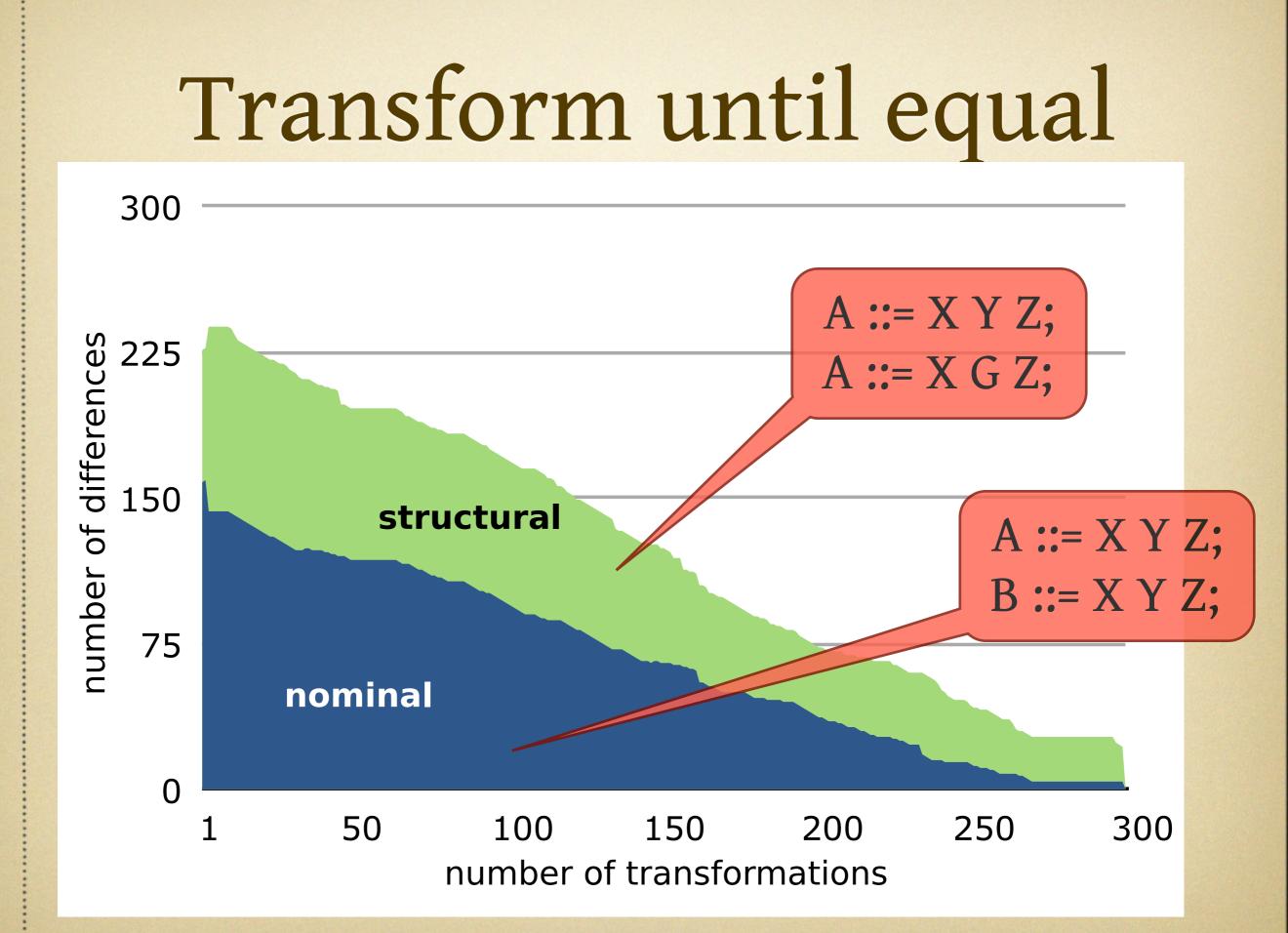
XBGF (grammar correction)
project(
 Expression&Rest:
 < Expression&> "instanceof" Type
);


Grammar Convergence

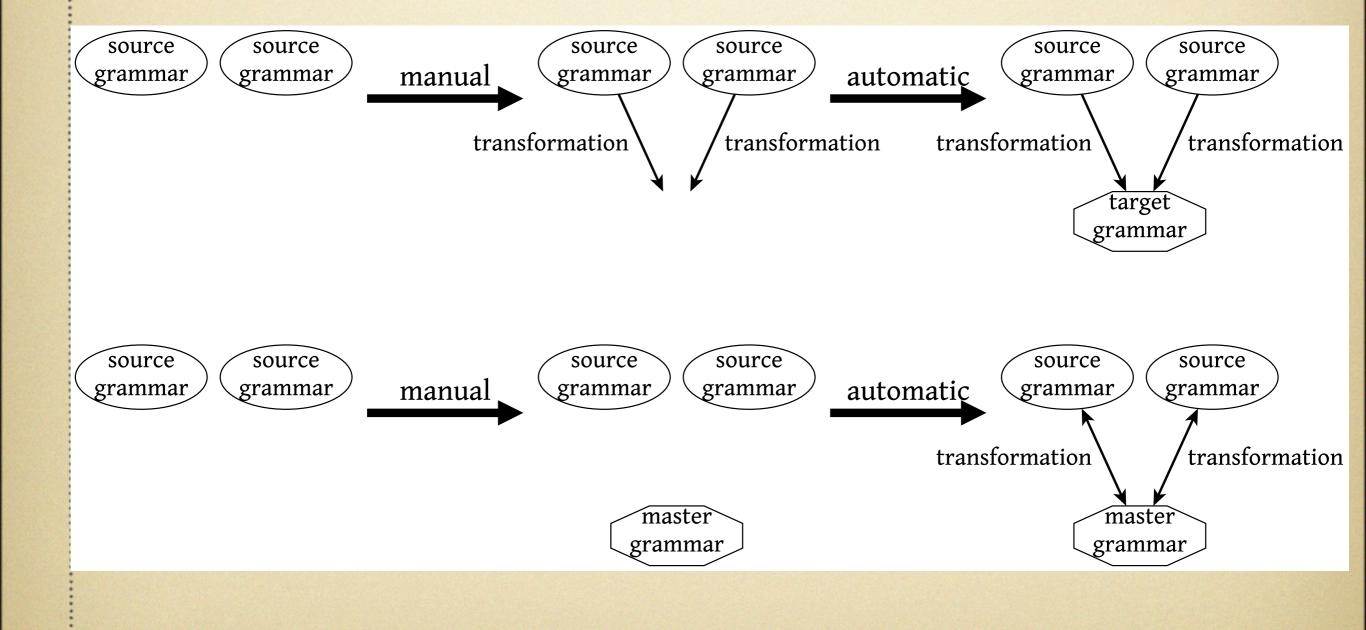
Claims we all hear

- "This compiler implements that language"
- "This appendix contains an [insert parsing technique here] optimised grammar of the language"
- "This grammarware produces data suitable to use with that grammarware"
- "These are 100 implementations of one language"
- "This language is a subset/superset of that language"
- "This version of a compiler is backward compatible"


Grammar convergence


Different implementations of the same language (parsers, data models, etc.)

Alternative scenario


Different versions of a language as documented by specifications

Guided Grammar Convergence

Guided convergence

Abstract Normal Form

Vadim Zaytsev @grammarware

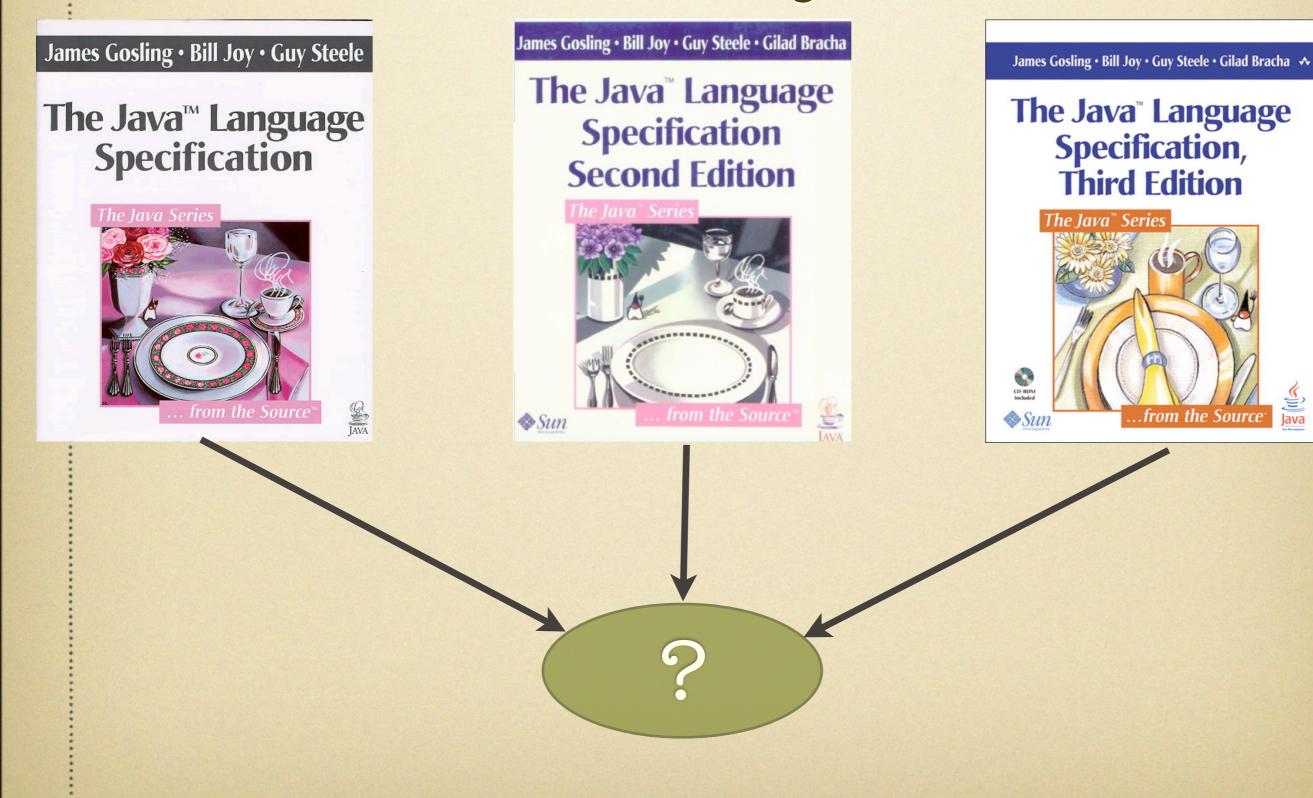
Defining a normal form and converting your models/grammars to that normal form does wonders.

9:40 AM - 31 Jan 12 via Twitter for Android · Embed this Tweet

Abstract Normal Form

- lack of selectable (named) subexpressions
- lack of labels for production rules
- lack of terminal symbols
- maximal outward factoring of inner choices
- lack of horizontally-defined nonterminals
- the set of starting symbols equals the set of non-leaf tops

Production signature


	Expression	Production signature					
x	nonterminal, $x \neq n$	1					
n	recursion	0					
<i>s</i> ?	optional subexpression, $x \neq n$?					
n?	optional recursion	$\overline{oldsymbol{\cdot}}$					
s^+	iteration, $x \neq n$, one or more	+					
n^+	iterative recursion, one or more	\oplus					
s^*	iteration, $x \neq n$, zero or more	*					
n^*	iterative recursion, zero or more	\bigotimes					
α	"any character" metasymbol	α					
(e_1,\ldots)	sequence	sorted concatenation of prodsigs					

Computation of prodsigs

•	Master grammar	Rascal					
			Expr:				
	expr:	001	Expr Ops Expr				
1	STR		Expr:				
	expr:	1⊕	Name Expr ⁺				
1	INT		Expr:				
	expr:	000	Expr Expr Expr				
1⊕	STR $expr^+$		Expr:				
	expr:	0	Expr				
001	expr operator expr		Expr:				
	expr:	1	Name				
000	expr expr expr		Expr:				
		1	Int				

Case Studies

Case study: JLS

JLS convergence results

	jls1	jls12	jls123	jls2	jls3	read12	read123	Total
Number of lines		5114	2847	6774	10721	1639	3082	30859
Number of transformations	67	290	111	387	544	77	135	1611
• Semantics-preserving (§4.2.2)	45	231	80	275	381	31	78	1121
• Semantics-increasing/-decreasing	22	58	31	102	150	39	53	455
• Semantics-revising	—	1	—	10	13	7	4	35
Preparation phase (§4.2.1)	1	_		15	24	11	14	65
• Known bugs		_		1	11	—	4	16
• Post-extraction		—	—	7	8	7	5	27
 Initial correction 	1	—	—	7	5	4	5	22
Resolution phase	21	59	31	97	139	35	43	425
• Extension (§4.2.3)	<u> </u>	17	26		—	31	38	112
• Relaxation (§4.2.4)	18	39	5	75	112		2	251
• Correction (§4.2.5)	3	3	— —	22	27	4	3	62

Convergence reveals relationships

	jls1	jls12	jls123	jls2	jls3	read12	read123	Total
o rename	9	4	2	9	10	-	2	36
o reroot	2	-	-	2	2	2	1	9
o unfold	1	10	8	11	13	2	3	48
o fold	4	11	4	11	13	2	5	50
o inline	3	67	8	71	100	—	1	250
o extract	—	17	5	18	30	—	5	75
o chain	1		2			1	4	8
o massage	2	13	—	15	32	5	3	70
o distribute	3	4	2	3	6	_	_	18
o factor	1	7	3	5	24	3	1	44
 deyaccify 	2	20	-	25	33	4	3	87
o yaccify		—		_	1		1	2
 eliminate 	1	8	1	14	22		—	46
o introduce	-	1	30	4	13	3	34	85
 import 			2			—	1	3
o vertical	5	7	7	8	22	5	8	62
 horizontal 	4	19	5	17	31	4	4	84
o add	1	14	13	7	20	28	20	103
o appear	—	8	11	8	25	2	17	71
0 widen	1	3		1	8	1	3	17
o upgrade		8		14	20	2	2	46
o unite	18	2	1 i i i	18	21	5	4	68
o remove		10	1	11	18	-	1	41
 disappear 	-	7	4	11	11	—		33
o narrow			1		4			5
 downgrade 		2	—	8	3	—	-	13
o define		6	<u> </u>	4	9	1	6	26
o undefine	—	3		5	3	<u> </u>	—	11
 redefine 		3	-	8	7	6	2	26
 inject 			-	2	4	_	1	7
 project 		1		1	2	110 - AT	1993	4
 replace 	3	1	2	3	6	1	1	17
o unlabel							2	2

Guided convergence of FL

	antlr	dcg	sdf	rascal	txl	ecore	$ecore_2$	xsd	jaxb	om
One to many nonterminals	_		_	—	-	+	—	+	—	_
Nominal mismatches	+	+	+	+	+	+	+	+	+	+
More liberal definitions	—	—	—	—	—	-	—	—	+	+
Superfluous nonterminals	+	+	+	+	+	—	—	—	—	-
Disconnected nonterminals	_	_	_	—	-	—	—	+	+	+
Maximum number of versions	1	1	1	2	2	4	1	1	1	1
Chain production rules	+	_	_	—	_	+	+	+	+	+
Permutations	—	—	_	—	_	±	+	+	+	+
Reflexive chain rules	+	+	+	+	+	+	_	_		_
Undefined matched as	ε	ε	ε	ε	ε	φ	ε	ε	ε	ε
Aggregation	—		<u> </u>			+			_	
Layered definitions	+	+	_	—		—	-	_	_	_
Meaningful chain rules	<u> </u>	—	—	-	-	+	-	-	— —	—

Bibliography

Resources

- Lämmel, Zaytsev, <u>An Introduction to Grammar Convergence</u>, iFM 2009, LNCS 5423.
- Lämmel, Zaytsev, <u>Reverse Engineering Grammar Relationships</u>, WSR 2010.
- Zaytsev, <u>Language Convergence Infrastructure</u>, GTTSE 2009, LNCS 6491.
- Lämmel, Zaytsev, <u>Recovering Grammar Relationships for the</u> JLS, SCAM 2009, SQJ 19:2, CoRR <u>abs/1008.4188</u>.
- Zaytsev, Guided Grammar Convergence, draft.

grammarware.net

slps.sf.net