
Vadim Zaytsev, SWAT, CWI
 2013

Modelling Robustness
with

Conjunctive Grammars

6th SATToSE 2013, Bern

http://grammarware.net/
http://grammarware.net/
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/research-groups/Software-Analysis-and-Transformation
http://www.cwi.nl/
http://www.cwi.nl/

Motivation

Motivation
•No ideal model for

robust parsers

•Island parsers are often
idiosyncratic

•Have fun with
conjunctive grammars

•Grammars in da cloud

•…

•PROFIT?

What’s a grammar?

•Language definition

•characteristic function of the language

•iterator for language elements

•“grammatical correctness”

•Commitment to grammatical structure

•<N,T,P,s,…>

P. Klint, R. Lämmel, C. Verhoef. Toward an Engineering Discipline for Grammarware. ToSEM, 2005.

What about semantics?

•Grammars define syntax

•Syntax is just the beginning of semantics

•…or is it?

•Colorless green ideas sleep furiously.

Noam Chomsky !

Syntactic Structures
(1957)

Despite the undeniable interest and importance of
semantic and statistical studies of language, they
appear to have no direct relevance to the problem of
determining or characterizing the set of
grammatical utterances. I think that we are forced
to conclude that grammar is autonomous and
independent of meaning.

Noam Chomsky !

Grammars
define structure

&
can assume

different semantics

What’s a conjunctive grammar?

•Classic grammars define sets of words

•Set operations:

•disjunction / choice / addition

•conjunction / intersection

•negation

•Purely theoretical extension

•Scarce Some practical uses

A. Okhotin. Conjunctive Grammars. JALC, 2001.

http://users.utu.fi/aleokh/papers/conjunctive.pdf
http://users.utu.fi/aleokh/papers/conjunctive.pdf

What’s robustness?

•Tolerance towards language dialects

•Agile grammar hacking engineering

•Negotiated transformations

•Information recovery heuristics

analysis

Precise
parsing

parsing grammars

Lexical

Fuzzy Island Skeleton
grammars repair

Error

Figure 10. A spectrum of approaches for source code analysis.

Grammar Productions LOC Keywords
Simple statement skeleton 51 209 82
Nested statement skeleton 268 438 129
Base-line grammar 888 1228 325

We have experienced that the runtime for the different
parsers lies within the same range; parsing with the base-
line grammar is as fast as parsing with a small skele-
ton grammar. Note, that this was not the case when we
started our project because a less systematic default comple-
tion caused many (local) ambiguities and in turn penalties.
The described scheme for default productions using simple
means for synchronisation is very robust.

6. Related work

Fuzzy parsing In [Kop97], the notion of fuzzy parsing is
defined and engineered. Fuzzy parsers perform syntactical
analysis on selected portions of the input for the purpose of
the extraction of a partial source code model. The key idea
is to identify ‘anchor terminals’ that trigger the application
of context-free productions. That is, the input is skipped
until an anchor a is found, and then context-free analysis
is attempted using a production starting with a. This is a
rather lexical approach because no context-free structure is
employed to determine the context for constructs of interest.

Island grammars A potent refinement of fuzzy parsing
is the notion of an island grammar [DK99, Ver00, Moo01,
Moo02]. A unified syntax definition formalism is used to
specify islands and water. Island grammars from the liter-
ature are geared towards very specific parsing technology.
Island grammars amalgamate lexical and context-free anal-
ysis rather heavily; see the lexical definition of Water in
Fig. 1 which tends to compete with problem-specific forms
of chunk. As discussed in Sec. 2, island grammars can
be radically concise for simple analysis and transformation
problems when compared to an up-front development of a
conservative parser. Furthermore, the island grammar ap-
proach does immediately lead to very tolerant parsers.

Degrees of tolerant parsing In Fig. 10, we place var-
ious approaches on a chart regarding their relative posi-
tion in between lexical analysis and precise parsing. Fuzzy
parsers involve a lexical criterion to switch to the context-
free mode. Island grammars can mix lexical vs. context-free

style in more sophisticated ways. Still the islands are found
in lists of chunks with little or no similarities to the parse-
tree structure suggested by a base-line grammar. Skeleton
grammars employ ordinary context-free productions where
lexical skips only occur at subtrees the structure of which is
not relevant. Error-repairing parsers can be seen as a way
to achieve tolerance. The simple approach is ‘panicking’
using stop symbols [AU73, ASU86] on top of an otherwise
precise grammar. So lexical skips only occur for recovery
from parser errors. A sophisticated approach is described
in [BH82] where recovery from all errors is guaranteed, and
recovery is driven by the grammar structure rather than us-
ing a criterion for plain lexical panicking.

7. Conclusion

We have first presented a formal definition of tolerant gram-
mars. The parsers that are derived from our tolerant gram-
mars accept inputs that use unanticipated phrases in the
sense of dialects. Our definition specifically addresses the
issue of false positives and false negatives, which are to
be avoided when performing tolerant parsing. We have
then described a semi-automatic process to derive a tolerant
grammar for the productions that are needed for a specific
grammar-based software tool. We have demonstrated our
approach in the context of Cobol re-engineering. The result-
ing parsers scale as required for use in industrial projects.
Compared to previous work on error repair, fuzzy parsing,
and island grammars, the following shift of focus and added
value can be pointed out:

• We reuse productions from an existing base-line gram-
mar to define the structure of constructs of interest.
That is, we do not advocate the design of problem-
specific productions, as in the case of island grammars.
Because all our components for system transformation
and analysis are based on one base-line grammar, com-
ponent composition is possible.

• We advocate a form of tolerant grammars which
we call skeleton grammars because they share their
context-free structure with a base-line grammar down-
to a certain depth in the parse tree. Thereby, we estab-
lish the right context for constructs of interest, which
in turn contributes to reliable tolerant parsing, without
false positives and false negatives.

S. Klusener, R. Lämmel, Deriving Tolerant Grammars from a Base-line Grammar, ICSM 2003

http://homepages.cwi.nl/~ralf/icsm03/
http://homepages.cwi.nl/~ralf/icsm03/

Island grammars

Island grammars

•Detailed production rules for interesting constructs

•Liberal production rules for the rest

• ~[\.]+ [\.] ! Statement
• ~[\ \t\n]+ ! Water {avoid}

•Minimal set of assumptions about the overall
structure

•(e.g., “a program is a list of statements”)

A. van Deursen, T. Kuipers, Building Documentation Generators, ICSM 1999.
L. Moonen, * using Island Grammars, WCRE 2001, IWPC 2002.

Conjunctive clauses

•Statement is a chunk between dots/semicolons/…

•Statement is also something else

•keyword, expression, block

•So, we define a statement

•as an “island” and as a statement

Assumed semantics 1

•Take a conjunctive robust grammar

•Parse classically as a conjunctive grammar

•recursive descent or generalised LL

•Run over a sufficiently big reference codebase

•" validation of the robust grammar

Assumed semantics 2

•Take a conjunctive robust grammar

•Parse only with detailed clauses

•If failed, backtrack to tolerant clauses

• locally

•" disciplined error recovery

Assumed semantics 3

•Take a conjunctive robust grammar

•Parse only with tolerant clauses

•obtain the global structure

•Parse the islands with subgrammars

• if possible

•" grammarware as a service

Parsing in the cloud

Parsing in the cloud

compilation-unit:
 using-directives? global-attributes?
 namespace-member-declarations?
using-directives:
 using-directive
 using-directives using-directive
using-directive:
 using-alias-directive
 using-namespace-directive
using-alias-directive:
 "using" id "=" namespace-or-type-name ";"
...

Parsing in the cloud

vertical(using-directives);
deyaccify(using-directives);
inline(using-directives);
inline(using-alias-directive);
inline(using-namespace-directive);
massage(using-directive+?, using-directive*);
factor(
 (("using" identifier "=" namespace-or-type-
name ";") | ("using" namespace-name ";")),
 "using" ((identifier "=" namespace-or-type-
name) | (namespace-name)) ";");
...

Parsing in the cloud

compilation-unit:
 ("using" using-directive-insides ";")* ("[" "assembly" ":"
ga-section-insides "]")* namespace-member-declaration*
namespace-member-main:
 "namespace" qualified-identifier class-base?
 "{" namespace-body-insides "}" ";"?
 "class" identifier class-base?
 "{" class-member-declarations? "}" ";"?
 "struct" identifier struct-interfaces?
 "{" struct-member-declarations? "}" ";"?
 "interface" identifier interface-base?
 "{" interface-member-declarations? "}" ";"?
 "enum" identifier enum-base? "{" enum-body-insides "}" ";"?
 "delegate" type id "(" formal-parameter-list? ")" ";"
...

Parsing in the cloud
layout L = [\ \t\r\n]* !>> [\ \t\r\n] ;

syntax CompilationUnit = ("using" NotSemicolon ";")*
 ("[" "assembly" ":" NotRightSquareBracket "]")*
 NamespaceMemberDeclaration* ;

syntax NotRightSquareBracket = NRSBChunk+ () >> [\]];
lexical NRSBChunk = ![\]\ \t\r\n]+ >> [\]\ \t\r\n];

...

Parsing in the cloud
using-directive-insides:
 ...

ga-section-insides:
 ...

attribute-section-insides:
 ...

Related work
•Quasi-synchronous grammars

• natural language translation framework

•Parallel parsing

• usually non-distributed, but concurrent

•Ambiguity elimination

• ambiguity is bad, okay?

•Permissive grammars

• explicit error recovery rules

Related work
• Quasi-synchronous grammars

• D. A. Smith, J. Eisner. Quasi-Synchronous Grammars: Alignment by
Soft Projection of Syntactic Dependencies. StatMT 2006.

• Parallel parsing

• H. Alblas, R. op den Akker, P. O. Luttighuis, K. Sikkel. A Bibliography
on Parallel Parsing. SIGPLAN Notices 1994.

• Ambiguity elimination

• H. J. S. Basten, Tracking Down the Origins of Ambiguity in Context-free
Grammars, ICTAC 2010.

• Permissive grammars

• L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, E. Visser. Providing
Rapid Feedback in Generated Modular Language Environments. Adding
Error Recovery to SGLR Parsing. OOPSLA 2009.

Current/future work

•Robustness techniques & tolerance spectrum

•Semi-parsing with Boolean grammars

•Validation/testing of skeleton grammars

Stay tuned!

vadim@grammarware.net

mailto:vadim@grammarware.net?subject=IPA
mailto:vadim@grammarware.net?subject=IPA
http://grammarware.net
http://grammarware.net

