
Introduction to
Software
Evolution

Dr. Vadim Zaytsev aka @grammarware
UvA, MSc SE, 25 October 2015

Scale
ht

tp
:/

/w
ww

.i
nf

or
ma

ti
on

is
be

au
ti

fu
l.

ne
t/

vi
su

al
iz

at
io

ns
/m

il
li

on
-l

in
es

-o
f-

co
de

/

Scale
ht

tp
:/

/w
ww

.i
nf

or
ma

ti
on

is
be

au
ti

fu
l.

ne
t/

vi
su

al
iz

at
io

ns
/m

il
li

on
-l

in
es

-o
f-

co
de

/

Scale
ht

tp
:/

/w
ww

.i
nf

or
ma

ti
on

is
be

au
ti

fu
l.

ne
t/

vi
su

al
iz

at
io

ns
/m

il
li

on
-l

in
es

-o
f-

co
de

/

Scale
ht

tp
:/

/w
ww

.i
nf

or
ma

ti
on

is
be

au
ti

fu
l.

ne
t/

vi
su

al
iz

at
io

ns
/m

il
li

on
-l

in
es

-o
f-

co
de

/

Scale
ht

tp
:/

/w
ww

.i
nf

or
ma

ti
on

is
be

au
ti

fu
l.

ne
t/

vi
su

al
iz

at
io

ns
/m

il
li

on
-l

in
es

-o
f-

co
de

/

Schedule
W44 Introduction V.Zaytsev

W45 Metaprogramming J.Vinju

W46 Reverse Engineering V.Zaytsev

W47 Software Analytics M.Bruntink

W48 Clone Management M.Bruntink

W49 Source Code Manipulation V.Zaytsev

W50 Legacy and Renovation TBA

W51 Conclusion V.Zaytsev

Schedule
W44 Introduction V.Zaytsev

W45 Metaprogramming J.Vinju

W46 Reverse Engineering V.Zaytsev

W47 Software Analytics M.Bruntink

W48 Clone Management M.Bruntink

W49 Source Code Manipulation V.Zaytsev

W50 Legacy and Renovation TBA

W51 Conclusion V.Zaytsev

Schedule
W44 Introduction V.Zaytsev

W45 Metaprogramming J.Vinju

W46 Reverse Engineering V.Zaytsev

W47 Software Analytics M.Bruntink

W48 Clone Management M.Bruntink

W49 Source Code Manipulation V.Zaytsev

W50 Legacy and Renovation TBA

W51 Conclusion V.Zaytsev
Honours Track

Series 1:
implement a set of

metrics
Series 2:

write a clone detector

Review a paper

Deadlines &
Deliverables

* 2 Nov: Series 0 (Rascal test)
* 17 Nov: Series 1 = ⅓ grade
* 1 Dec: Review = ⅓ grade
* 15 Dec: Series 2 = ⅓ grade

Teachers
Dr. Vadim Zaytsev

Prof.Dr. Jurgen Vinju

Dr. Magiel Bruntink

Davy Landman Jouke Stoel

Software Types

Program Types: S

* S-type programs
* “specifiable”

* problem formally defined by a spec
* automated acceptance possible

* such software does not evolve

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program Types: S

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 20:
Software Maintenance

!Software Evolution
! Software types
! Laws of evolution

!Maintaining software
! types of maintenance
! challenges of maintenance

!Reengineering and reverse engineering

!Software Reuse

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Program Types
!S-type Programs (“Specifiable”)

! problem can be stated formally and completely
! acceptance: Is the program correct according to its specification?
! This software does not evolve.

! A change to the specification defines a new problem, hence a new program

! P-type Programs (“Problem-solving”)
! imprecise statement of a real-world problem
! acceptance: Is the program an acceptable solution to the problem?
! This software is likely to evolve continuously

! because the solution is never perfect, and can be improved
! because the real-world changes and hence the problem changes

!E-type Programs (“Embedded”)
! A system that becomes part of the world that it models
! acceptance: depends entirely on opinion and judgement
! This software is inherently evolutionary

! changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Laws of Program Evolution
!Continuing Change

! Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

! The change process continues until it is judged more cost effective to replace the
system entirely

! Increasing Complexity
! As software evolves, its complexity increases…

! …unless steps are taken to control it.

!Fundamental Law of Program Evolution
! Software evolution is self-regulating with statistically determinable trends

and invariants

!Conservation of Organizational Stability
! During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

!Conservation of Familiarity
! During the active life of a program the amount of change in successive

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063. See also, van Vliet, 1999, Pp59-62

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Program Types: P

* P-type programs
* “problem-solving”
* problem models a real-world task
* imperfectly

* qualitative acceptance
* they can evolve continuously

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program Types: P

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 20:
Software Maintenance

!Software Evolution
! Software types
! Laws of evolution

!Maintaining software
! types of maintenance
! challenges of maintenance

!Reengineering and reverse engineering

!Software Reuse

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Program Types
!S-type Programs (“Specifiable”)

! problem can be stated formally and completely
! acceptance: Is the program correct according to its specification?
! This software does not evolve.

! A change to the specification defines a new problem, hence a new program

! P-type Programs (“Problem-solving”)
! imprecise statement of a real-world problem
! acceptance: Is the program an acceptable solution to the problem?
! This software is likely to evolve continuously

! because the solution is never perfect, and can be improved
! because the real-world changes and hence the problem changes

!E-type Programs (“Embedded”)
! A system that becomes part of the world that it models
! acceptance: depends entirely on opinion and judgement
! This software is inherently evolutionary

! changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Laws of Program Evolution
!Continuing Change

! Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

! The change process continues until it is judged more cost effective to replace the
system entirely

! Increasing Complexity
! As software evolves, its complexity increases…

! …unless steps are taken to control it.

!Fundamental Law of Program Evolution
! Software evolution is self-regulating with statistically determinable trends

and invariants

!Conservation of Organizational Stability
! During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

!Conservation of Familiarity
! During the active life of a program the amount of change in successive

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063. See also, van Vliet, 1999, Pp59-62

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Program Types: E

* E-type programs
* “embedded”

* solution is a part of the world
* acceptance is subjective

* they are inherently evolutionary

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program Types: E

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 20:
Software Maintenance

!Software Evolution
! Software types
! Laws of evolution

!Maintaining software
! types of maintenance
! challenges of maintenance

!Reengineering and reverse engineering

!Software Reuse

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Program Types
!S-type Programs (“Specifiable”)

! problem can be stated formally and completely
! acceptance: Is the program correct according to its specification?
! This software does not evolve.

! A change to the specification defines a new problem, hence a new program

! P-type Programs (“Problem-solving”)
! imprecise statement of a real-world problem
! acceptance: Is the program an acceptable solution to the problem?
! This software is likely to evolve continuously

! because the solution is never perfect, and can be improved
! because the real-world changes and hence the problem changes

!E-type Programs (“Embedded”)
! A system that becomes part of the world that it models
! acceptance: depends entirely on opinion and judgement
! This software is inherently evolutionary

! changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare change

change

real world

PROGRAM

abstract
view of worldrequirements

specification

model

change

S-type

P-type

E-type

Source: Adapted from Lehman 1980, pp1061-1063

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Laws of Program Evolution
!Continuing Change

! Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

! The change process continues until it is judged more cost effective to replace the
system entirely

! Increasing Complexity
! As software evolves, its complexity increases…

! …unless steps are taken to control it.

!Fundamental Law of Program Evolution
! Software evolution is self-regulating with statistically determinable trends

and invariants

!Conservation of Organizational Stability
! During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

!Conservation of Familiarity
! During the active life of a program the amount of change in successive

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063. See also, van Vliet, 1999, Pp59-62

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Lehman’s Laws of
Software Evolution

Lehman’s Laws (1/8)

* Continuing Change
* E-system rots unless adapted
* the process never stops
* (true for P-systems as well)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (2/8)

* Increasing Complexity
* E-system becomes more complex
* evolving means complicating
* (unless we do something)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (3/8)

* Self-regulation
* E-system evolution is SRP
* obeys certain statistical laws
* (distribution close to normal)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (4/8)

* Conservation of Organisational Stability
* E-system dev activity is invariant
* throughout its lifetime
* (does not depend on resources)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (5/8)

* Conservation of Familiarity
* E-system changes per release
* invariant

* throughout its lifetime
* (too little: bored; 
 too much: overwhelmed)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (6/8)

* Continuing Growth
* E-system must add features over time
* to keep users satisfied
* (expectations creep)

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws (7/8)

* Declining Quality
* E-system perceived quality declines
* internal as well as external
* (unless constantly maintained)

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws (8/8)

* Feedback System
* E-system evolution is a
* feedback system

* multi-level
* multi-loop
* multi-agent

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws
* Continuing Change
* Increasing Complexity
* Self-regulation
* Conservation of Organisational Stability
* Conservation of Familiarity
* Continuing Growth
* Declining Quality
* Feedback System

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Maintenance
Types

* Modification of a software product
after delivery to correct faults, to
improve performance or other
attributes, or to adapt the product
to a modified environment

Maintenance

IEEE 1219, 1993

Maintenance phases
* Introductory

* user support!
* Growth

* correcting faults!
* Maturity

* enhancements!
* Decline

* technology replacement!
Hans van Vliet, Software Engineering: Principles and Practice. Jon Wiley & Sons, 2009.

Types of maintenance

* Corrective

* Adaptive

* Perfective

* Preventive

B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations, 1980.

Types of maintenance

* Corrective

* Adaptive

* Perfective

* Preventive

B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations, 1980.

50%

4%

25%

21%

Types of maintenance
* Corrective

* Adaptive

* Perfective

* user enhancement

* efficiency

* other

* Preventive
B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance

of Computer Application Software in 487 Data Processing Organizations, 1980.

3%4%

43%

4%

25%

21%

Top 5 problems

* Quality of documentation

* User demand for enhancements

* Competing demands for maintainers’ time

* Meeting scheduled commitments

* Turnover in user organisations

S.L.Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 1998.

Is it hopeless?
* Higher quality

* less (c) maintenance
* Anticipating changes

* less (a&p) maintenance
* Better tuning to user needs

* less (p) maintenance
* Less code

* less (*) maintenance
Maurice ter Beek, http://www.liacs.nl/~mtbeek/se-ma.pdf

Roadmap

* Metaprogramming

* Reverse engineering

* Software analytics

* Clone management

* Source code manipulation

* Legacy

State of the Art

http://bibtex.github.io

* Metamodel evolves:

* Follow user actions
* Detect complex patterns
* Enrich evolution trace

Detecting Complex Changes During Metamodel Evolution 265

(a) Original metamodel (b) Evolved metamodel

Fig. 1. An evolution example of a composite pattern

pull property (via the generalization) and move property (via the relation r)
might be formed based on the same set of atomic changes: deleting property id
from the Composite class and adding id to the Component class. Only one of
the changes was intended by the user. However, since we cannot know which
complex change is the correct one, both must be detected. This phenomenon is
reinforced, when a lot of changes are performed on closely related or even the
same metamodel elements.

ii) Indefinite length. Complex change types have variable numbers of involved
atomic changes. For example, in Figure 1 property id is pulled from one subclass
Composite, yet a pull might also be applied when multiple subclasses contain the
same property. Thus, the number of property deletions varies with the number
of involved subclasses. Both issues reduce the recall that can be reached with
existing approaches.

iii) A further issue arises due to the fact that all existing approaches [4,6,7,
11,17] base the detection of complex changes on a set of atomic changes that
has been computed as the difference between the old and the new version of the
metamodel, the so-called difference model (DM). However, relying on the DM
suffers from two main drawbacks:

(1) The first is that the DM cannot detect some changes that are hidden by
other changes during evolution (called masked changes in [17]). Consequently,
information might be lost, which impacts both recall and precision of the detec-
tion approaches. For example, in Figure 1 the move property type from class
Composite to class Information is hidden by the change rename property type
to kind. The DM cannot detect these last two changes, but sees only two inde-
pendent operations: deletion of property type and addition of property kind as
summarized in Table 1.

(2) The second drawback of the difference-based approach is that the DM
returns an unordered sequence of all the detected changes. However, the chrono-
logical order of changes might be relevant during later co-evolution tasks, and
can be used during complex change detection for improving precision.

Contributions. We address these challenges by four contributions:

– First, we propose to record at run-time the trace of atomic changes, by listen-
ing and logging modeler’s editing actions within the modeling tool (editor).
This way drawbacks of the difference-based approaches can be tackled.

Detecting Complex Changes
During Metamodel Evolution

http://bibtex.github.io/CAISE-2015-KhelladiHBRG.html
http://dx.doi.org/10.1007/978-3-319-19069-3_17

Detecting Complex Changes During
Metamodel Evolution

Djamel Eddine Khelladi1(B), Regina Hebig1, Reda Bendraou1,
Jacques Robin1, and Marie-Pierre Gervais1,2

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, F-75005 Paris, France
djamel.khelladi@lip6.fr

2 Université Paris Ouest Nanterre La Defense, F-92001 Nanterre, France

Abstract. Evolution of metamodels can be represented at the finest
grain by the trace of atomic changes: add, delete, and update elements.
For many applications, like automatic correction of models when the
metamodel evolves, a higher grained trace must be inferred, composed
of complex changes, each one aggregating several atomic changes. Com-
plex change detection is a challenging task since multiple sequences of
atomic changes may define a single user intention and complex changes
may overlap over the atomic change trace. In this paper, we propose a
detection engine of complex changes that simultaneously addresses these
two challenges of variability and overlap. We introduce three ranking
heuristics to help users to decide which overlapping complex changes are
likely to be correct. We describe an evaluation of our approach that allow
reaching full recall. The precision is improved by our heuristics from 63%
and 71% up to 91% and 100% in some cases.

Keywords: Metamodel · Evolution · Complex change · Detection

1 Introduction

In the process of building a domain-specific modeling language (DSML) multiple
versions are developed, tried out, and adapted until a stable version is reached.
As by one of our industrial partners in the automotive domain, such intermediate
versions of the DSML are used in product development, where often further needs
are identified. A challenge hereby is that each time the metamodel of the DSML
is changed to a next version, already developed models need to be co-evolved
too. This is not only the case for DSMLs, but also for more generic metamodels,
e.g. the UML officially evolved in the past every two to three years.

To cope with this evolution of metamodels, mechanisms are developed to co-
evolve artifacts, such as models and transformations that may become invalid. A
challenging task herein is to detect all the changes that lead a metamodel from a
version n to a version n+1, called Evolution Trace (ET). Automatically detecting
it, not only helps developers to automatically keep track of the metamodels’
evolution, but also to trigger and/or to apply automatic actions based on these
changes. For instance, models and transformations that are defined based on
the metamodel are automatically co-evolved i.e. corrected based on the detected
c⃝ Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 263–278, 2015.
DOI: 10.1007/978-3-319-19069-3 17

Automated Unit Test Generation
for Evolving Software

* Software evolves.
* How about test cases?
* Functionality changes?
* (regression testing)

* Tests that used to work

http://bibtex.github.io/ESEC-FSE-2015-Shamshiri.html
http://dx.doi.org/10.1145/2786805.2803196

Automated Unit Test Generation for Evolving Software

Sina Shamshiri

Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello, Sheffield, UK, S1 4DP

sina.shamshiri@sheffield.ac.uk

ABSTRACT
As developers make changes to software programs, they
want to ensure that the originally intended functionality
of the software has not been a↵ected. As a result, devel-
opers write tests and execute them after making changes.
However, high quality tests are needed that can reveal unin-
tended bugs, and not all developers have access to such tests.
Moreover, since tests are written without the knowledge of
future changes, sometimes new tests are needed to exercise
such changes. While this problem has been well studied in
the literature, the current approaches for automatically gen-
erating such tests either only attempt to reach the change
and do not aim to propagate the infected state to the output,
or may su↵er from scalability issues, especially when a large
sequence of calls is required for propagation. We propose
a search-based approach that aims to automatically gener-
ate tests which can reveal functionality changes, given two
versions of a program (e.g., pre-change and post-change).
Developers can then use these tests to identify unintended
functionality changes (i.e., bugs). Initial evaluation results
show that our approach can be e↵ective on detecting such
changes, but there remain challenges in scaling up test gen-
eration and making the tests useful to developers, both of
which we aim to overcome.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

Keywords
Automated Unit Test Generation, Genetic Algorithms,
Search-Based Testing, Regression Testing

1. INTRODUCTION
Developers evolve software programs by introducing many

changes throughout the life-cycle of the software. These

changes often range from small refactorings to the addition
of large new features. However, some of these changes may
a↵ect the originally intended functionality of the software,
by introducing unintended bugs – also known as regression

faults. To avoid regressions in the functionality, engineers
write tests as they develop the software, and after making
changes developers execute these tests to increase their con-
fidence that the intended functionality of the software is in-
tact. This practice is also referred to as regression testing

and is commonly used in the industry.
While regression testing can help with early detection of

regression faults, developers face several challenges when ap-
plying the technique. As the number of tests grows, execu-
tion of all tests after every single change can become expen-
sive and impractical. This problem has been well studied in
the literature [18] and many techniques such as test selec-
tion, prioritization and minimization have been proposed.

The challenges however are not limited to the growing
cost of regression testing. Even if all tests are executed,
three main problems remain: 1) an existing set of tests is
required, 2) the tests are often written without foreseeing fu-
ture changes, and 3) the e↵ectiveness of the tests in finding
regression faults depends on the quality of the written tests.
According to the PIE model [15], to reveal a fault, a test has
to first execute the fault, infect the state and finally prop-
agate it to the output. While several techniques exist for
augmenting existing test suites (e.g., [10, 17]) and generat-
ing regression tests (e.g., [2,9,13,14]), the techniques mainly
focus on reaching the fault, yet the number of paths to prop-
agate the infected state to the output can explode, which
may impose a limit on the scalability of the approach [3].

To address the previous shortcomings, we propose a tech-
nique for generating a regression test suite (i.e. a set of unit-
tests which contain a sequence of calls executing the class un-
der test) without depending on existing tests. Our approach
takes two versions of a class under test, and uses a search-
based algorithm [8] with the objective of reaching and propa-
gating the changes between the two versions of the program.
We have implemented our approach named EvoSuiteR on
top of the EvoSuite [5] test generation tool, and our early
evaluation of the technique [11] showed encouraging results
on examples with propagation issues (i.e. where covering
the change alone does not propagate the changed state to
the output). Further attempts to evaluate the e↵ectiveness
of our approach on detecting real regression faults revealed
several challenges. As a part the remaining course of this
research we aim to solve these challenges, in addition to
evaluating our approach against the state-of-the-art.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy

ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803196

1038

Figure 1: Overview of the approach. Given two versions of
a Java class, EvoSuiteR aims to generate a test suite which
passes on one version of the class and fails on another one.

2. BACKGROUND
Although the topic of regression testing is well studied in

the literature, the majority of the studies focus on reusing
existing tests. However, since tests are written prior to the
changes, even with an existing test suite they can be in-
adequate for exercising changed behavior. As a result, re-
searchers have looked at augmenting existing test suites with
new tests that can exercise these changes (e.g., [1, 17]). Xu
et al. [16] also identified that the manner in which existing
tests are used for test suite augmentation can a↵ect the out-
come of the approach. While these techniques were found
to be e↵ective, an existing test suite is still required, and
the quality of the provided test suite has an impact on the
outcome and performance of the techniques.

Less attention however has been given to automatically
generating regression tests. Several techniques such as eX-
press [14] use dynamic symbolic execution (DSE) to generate
regression tests. Over the past years researchers have made
many advancements towards scalability of approaches using
DSE to avoid the path explosion problem. However, con-
sidering the PIE model, even if the reachability aspect is
solved, state infection and propagation remain as separate
challenges, since propagation alone can lead to another path
explosion problem. A di↵erent approach by Boheme et al. [2]
looks at generating regression tests using input values that
are symbolically partitioned such that they evaluate into the
same di↵erential behaviour.

Work has also taken place on using random test generation
tools for detecting regression faults. Jin et al. [6] in their ap-
proach named BERT, first use a test generation tool such as
Randoop to generate a set of tests on the pre-change version
of the software, and then execute the generated tests on the
post-change version, and observe the behavioral di↵erences.
Another approach named Di↵Gen by Taneja and Xie [13]
generates regression tests using instrumented test drivers.
By comparing the source code, Di↵Gen takes methods that
are semantically di↵erent across two versions of a program,
and synthesizes test drivers that compare the execution re-
sult of methods. To test their synthesized methods, they use
an automated test generation tool to generate tests for their
test drivers. Nevertheless, two main challenges remain: 1)
neither of the techniques focus on state infection and prop-
agation, 2) no large empirical evaluation of the techniques
exists to enable a more in-depth research in this area.

3. APPROACH
To aid the developer with early detection of regression

faults before releasing the software, our goal is creating a
solution that can take two versions of a program (e.g., be-
fore and after a change), and generate regression tests with
embedded assertions that fail on one version and pass on the

other one. Since the tests reveal the detected changes in the
functionality, developers can then assess whether or not the
changes were intentional.

3.1 A Search-Based Approach
To achieve this, we investigated the use of a search-

based approach for automatically generating regression
tests. Specifically, we focused on using a Genetic Algorithm
(GA) to search for solutions that can satisfy our objective.
A GA is an evolutionary algorithm which over time evolves
a population of individual solutions towards an objective,
using a fitness function which enables us to optimize for mul-
tiple goals simultaneously. In our case, each individual so-
lution (a.k.a. chromosome) is a test suite (set of test cases),
and the fitness function calculates how far an individual is
from the ultimate solution. Individuals in the population
are initially generated randomly, and then evolve over time
by the two functions of mutation (i.e., test suite is modified
by adding/removing test cases or the statements within the
test cases are mutated) and crossover (i.e., two individuals
are recombined to form two new o↵spring).
Since the fitness function drives the direction of the search,

we considered three main measurements: 1) coverage: the
level of goal-coverage achieved by each test suite on both
versions of the code, where a goal is defined as covering all
branches in the class under test in addition to all meth-
ods that do not contain any branches, 2) state distance:
after executing each test suite, how di↵erent is the state of
all objects in the test suite across the two versions, and 3)
control-flow distance: for each branch of the software, how
far are the two versions from diverging. An overview of our
approach is shown in Figure 1.
To implement our approach, we extended EvoSuite

and added functionality to support execution and state-
capturing of two versions of the same class. To capture
and compare the state of the program, we used Java reflec-
tion to extract the public and private state of the objects
in the test suite, and then compared the values based on
their numerical object distance [4]. Finally, if the same test
inputs exercises the change and di↵erent output values are
observed, we add assertions based on the output observed
from the original (i.e. pre-change) version. Since in practice
we can find methods that produce di↵erent output values
after each execution (e.g., a random number generator), a
threat exists to our approach that such false positives may be
detected. To avoid this and to lower the chance of false pos-
itive solutions, we re-execute each test case at least 3 times,
and the test is only kept if at each execution, it passes on
the original version and fails on the changed version.

3.2 Results Achieved So Far
3.2.1 Proof of Concept

To evaluate our technique, we first used several small-
sized non-trivial examples (e.g., CreditCard [11], BankAc-
count [6]) where simply reaching the change and infecting
the state would not result the internal di↵erent states to
propagate to the output. We found our approach to be
more e↵ective than the state of the art test generation tools
(i.e. BERT using Randoop and EvoSuite) in detecting the
changes, and moreover, our fitness function was more suc-
cessful compared to using coverage alone [11]. As a result,
we investigated the e↵ectiveness our approach on two large
sets of artificial (mutants) and real bugs.

1039

Detection of Software
Evolution Phases based on
Development Activities

* Software evol. history:
* commits — fine-grained
* releases — coarse

* Something in between?
* 8 kinds of phases:

* changes: important/not
* dev: rapid/slow
* change types: different/same

http://bibtex.github.io/ICPC-2015-BenomarASPS.html
http://dx.doi.org/10.1109/ICPC.2015.11

Detection of Software Evolution Phases
based on Development Activities

Omar Benomar, Hani Abdeen, Houari Sahraoui, Pierre Poulin, Mohamed Aymen Saied
DIRO, Université de Montréal, Canada

{benomaro, abdeenha, sahraouh, poulin, saiedmoh}@iro.umontreal.ca

Abstract— Software evolution history is usually represented
at fine granularity by commits in software repositories, and
at coarse granularity by software releases. In order to gain
insights on development activities and on software evolution, the
information on releases is too general, whereas the information
on commits is prohibitively large to be efficiently processed by
a developer. This paper proposes an automatic technique for the
identification of distinct phases of evolution. Such software evolu-
tion phases are characterized by similar development activities in
terms of changes to entities. Therefore, our technique decomposes
software evolution history to assist developers identify periods
of different development activities. Our analysis technique is a
search-based optimization of the best decomposition of commits
from the software repository using heuristics such as classes
changed in each commit, and the magnitude/importance of these
changes. To validate our technique, we applied it on the evolution
history of five case studies covering multiple releases over several
years of development. An interesting outcome of the evaluation
is that our automatic decomposition of software evolution history
recovered the original decomposition in software releases.

I. INTRODUCTION

A software system continuously evolves as it is maintained
and enhanced over its lifespan [1]. To understand software
evolution, we need to examine the dynamic behavior of a
system over time [2]. A software repository records a trace of
the evolutionary path taken during the realization of a software
system, from all its previous versions to its current status.
This evolution trace usually consists of commits, and often
spans several years of development. On the one hand, com-
mits represent atomic changes applied to software modules,
and hence hold evolution information at a fine granularity.
However, over a typical long period of development, the
amount of information associated to commits is overwhelming.
This makes any attempt to gain higher-level insights on the
software evolution very challenging for a developer [3]. On
the other hand, software evolution can also be represented by
information collected at successive releases. A release event
is a public event in software evolution, which is taken by
the decision makers to set the boundaries of an iteration in
software development [4]. Release notes, when available and
rigorously documented, include information such as bug fixes,
updated/new features, etc. However, information included in
release notes is at a too coarse granularity [5].

Therefore, we are interested in techniques that can automat-
ically describe the evolution process and provide a balance
between the abstraction levels of commits and releases. The
description should provide a periodical overview to help soft-

ware managers better understand major development activities
occurring in relevant periods of the software development
process. For instance, a good overview should allow managers
to answer questions such as: What type of changes better
describes a given development period, and distinguishes it
from other periods? What is the significance of changes during
this period? Which classes/files most activities were performed
on? How rapid or slow was the rhythm of development?

To ease automation of the recovery process and mini-
mize human intervention, we must avoid describing software
changes with subjective terms, such as perfective, corrective,
adaptive, feature addition, nonfunctional improvement, etc. We
believe, as other researchers do (e.g., Kothari et al. [3]), that
describing software changes with such terms is impossible
in an accurate and automated fashion. Unlike existing work
on understanding software evolution (e.g., [2], [6]–[8]), we
seek an approach that describes software changes based on
concrete facts, such as: the type of changes (e.g., add method,
remove method, update method, add class, rename attribute or
parameter, etc.) [9], the amplitude and significance of changes
according to their potential impact on the source code [10],
the classes/files involved in changes, the periodicity of changes
(i.e., the rhythm of development) [7]. All this information can
be automatically retrieved using information from the code
and commits in source-control repositories.

To this end, we propose an approach that automatically
analyzes the evolution of code from software repositories over
the software’s lifespan, as well as the temporal rhythm of
its development activities. It uses search-based optimization
techniques to find the best decomposition of the evolution
process into phases of development activities. In our approach,
an evolution phase should delimit a period of time that is
characterized by: (1) a dominant type of changes, that is dif-
ferent than the types of changes that characterize previous and
next phases; (2) a regular rhythm of development activities;
(3) a distinct set of classes undergoing changes over this time
period, that is different than the set of classes changed in
previous and next phases; and (4) a similar significance for
the changes that all classes undergo through during the phase.

Then, we transform the above set of heuristics into metrics
that will be used in our decomposition approach of software
evolution in order to classify detected evolution phases in
eight categories. Our classification should enable software
managers to understand the major development activities that
characterize a time period, and to detect recurrent patterns

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE
DOI 10.1109/ICPC.2015.11

15

Fig. 5. Evolution phases per software release for all analyzed systems. Each
horizontal rectangle is a sequence of evolution phases, which represents one
release. The duration of an evolution phase within a release is proportional
to the release duration. The classes from Table I are color-coded as indicated
on the top.

Fig. 6. Sequences of evolution phase types for all analyzed releases. Each line
is a sequence of evolution phases, which represents a release. The sequences
are ordered by similarity independent of their respective software. The color
codes are the same as in Figure 5.

by phases from the red family, but rarely by blue or gray
families of phases. This is mainly the case for the first seven
releases of ArgoUML and all releases of ICEFaces1. The
noticeable difference between the aforementioned releases is
that the number of transitions between evolution phases, which
involve important changes (red family of phases) and less
important changes (green family of phases), is much larger
in the ArgoUML releases than in the ICEFaces1 releases.
Focusing on the beginning of releases, Figure 6 shows that the
largest subset of analyzed releases are those that begin with
rapid development phases involving relatively less important
changes. More precisely, 24 releases out of 45 releases begin
with evolution phases from the green family (K, L). In second
place come the releases that begin with important changes
in rapid development rhythm. Precisely, 12 releases begin

with evolution phases from the red family of phases (A, B).
Releases that begin with slow development rhythm involving
less important changes are rare. In our study, only 3 releases
begin with phases from the gray family (N, M). Hence, we
think that these are exceptional cases. This leads us to identify
different categories of releases.

Categories of releases: Based on the families of phases in
release sequences, their numbers, and the number of transitions
between phases, we can identify the following categories:
• Rapid development: Releases that are characterized by rapid

development activities consist mainly of red and green
families of phases (A, B, K, L). Such releases are the
first 7 releases of ArgoUML (ordered bottom to top in the
figure), all the releases of ICEFaces1, except the latest one
(the servicing period), and the latest release of JFreeChart.
Here, we observe that the development of ArgoUML and
ICEFaces1 was relatively rapid in the beginning, and then
passed to phases of relatively slow development, while the
development of JFreeChart became rapid in its latest (ana-
lyzed) release. Another example of such rapid development
of releases is ICEFaces3 3.0.1, which consists of two evo-
lution phases (B, L) depicted as an orange and then a green
rectangle. This official maintenance release featured over
100 improvements and fixes during a development period
of about a month with more than 60 commits. The first
phase (B) of this release involved important changes, and
the last phase (L) is composed of less important changes,
which suggests a consolidation period before the release.

• Slow development: As opposite to rapid development of
releases, these releases are characterized by a slow devel-
opment rhythm throughout the release development cycle.
These releases are consisting mainly of blue and gray
families of phases (C, D, M, N). Such releases are releases
ArgoUML 0.30.2 and 0.35.1, which have the following
sequences of evolution phases, respectively: {C-N} and {D-
N}. The main difference in release 0.30.2 is that during a
noticeable long period of the release development life cycle,
the development activities were characterized by different
types of important changes, i.e., phase C in 0.30.2 represents
a period of 23 development days of the 78 days for the devel-
opment of the release. An exceptional slow development in
our sample is the servicing period in ICEFaces2 after release
2.1.0Beta2, which consists of only one evolution phase:
{C}. This indicates that 100% of the release development
period (173 development days) is characterized by different
important changes produced in slow development rhythm.
In our sample, these releases are considerably less frequent
than rapid development releases. Figure 6 shows that the
frequency of releases starting by rapid development phases
(see releases that start with phases from the red family (A,
B) or the green family (K, L) is considerably higher than
the frequency of other releases.

• Arrhythmic development: When the rhythm of develop-
ment throughout the release development life cycle is not
constant, switching between rapid and slow developments,
we say that the release is characterized by an arrhythmic

23

Evolution of Software
Development Strategies

* Expert/novice devs
* Look at students
* first year
* final year

http://bibtex.github.io/ICSE-2015-FalknerSVF.html
http://dx.doi.org/10.1109/ICSE.2015.153

Evolution of Software Development Strategies
Katrina Falkner, Claudia Szabo, Rebecca Vivian and Nickolas Falkner

School of Computer Science
The University of Adelaide,

Adelaide, Australia
Email: firstname.lastname@adelaide.edu.au

Abstract—The development of discipline-specific cognitive and
meta-cognitive skills is fundamental to the successful mastery
of software development skills and processes. This development
happens over time and is influenced by many factors, however
its understanding by teachers is crucial in order to develop
activities and materials to transform students from novice to
expert software engineers. In this paper, we analyse the evolution
of learning strategies of novice, first year students, to expert, final
year students. We analyse reflections on software development
processes from students in an introductory software development
course, and compare them to those of final year students, in a
distributed systems development course. Our study shows that
computer science - specific strategies evolve as expected, with the
majority of final year students including design before coding in
their software development process, but that several areas still
require scaffolding activities to assist in learning development.

I. INTRODUCTION

The development of deep learning strategies, self-regulation,
abstract thinking and metacognitive strategies are vital in order
to assist students in achieving success [1], [2]. A student
with self-regulated learning behaviours will set their goals,
determine and allocate their resources, as well as manage
their time effectively [3]. Without this fundamental level of
metacognition, students cannot direct their knowledge in a
useful and constructive manner and thus are unlikely to suc-
ceed. A significant aspect in the development of self-regulating
learning (SRL) strategies is the ability to monitor and reflect
upon those strategies within the context of Computer Science
(CS) as a discipline, enabling the individual to identify their
success or failure, identify strategies to apply in specific
contexts, and develop new strategies [4], [5]. Allwood [6]
identifies that novices tend to use more general strategies
rather than the more powerful specialised strategies employed
by experts. According to Robillard [7], expert programmers
tend to adopt a systematic planning process, based upon access
to the conceptual knowledge required to complete the specified
task, enabling a breadth-first search of the problem space.
Novice programmers, however, build their planning and design
processes upon their knowledge of programming languages,
resulting in a depth-first search and a focus on concrete rather
than abstract argumentation.

The transition from novice to expert is assisted by reflection
on prior successes and failures [8], followed by analysis of
potential areas for improvement. Before we can assist our
students in the process of reflection and self-regulation, we
must identify and articulate successful SRL strategies for the

CS context [9]. Therefore, we must develop an understanding
of those discipline specific strategies that can be successfully
learnt and adopted by students [10].

In our previous work [11], we analysed students’ reflections
on their SRL processes as applied to introductory software
development. Using a grounded theory model of qualitative
analysis, we were able to identify SRL strategies that are spe-
cific to software development, expressed in the students’ own
words and relative to their own experiences. We presented a
detailed analysis of the nature of these discipline-specific SRL
strategies and how these strategies contribute to the learning
of novice students. In this paper, we explore the evolution
of discipline-specific SRL strategies through the combined
analysis of a cohort of novice students, and a second cohort of
final year students. We present an analysis of the evolution of
SRL strategies from novice to expert learners, with the aim of
identifying points where the development and application of
identified SRL can be improved. The analysis of this evolution
is fundamental for the development of targeted scaffolding and
support to address identified issues. Our findings show that
students develop a range of sophisticated strategies, that can
be readily scaffolded within the curriculum.

II. RELATED WORK

Self-regulated learners have been defined by Zimmerman
[2] as those that “plan, set goals, organise, self-monitor and
self-evaluate”. The development of SRL strategies has been
found to be a complex issue, associated with the perceived
purpose of engagement with the activity, the students self-
perception of their ability, and the situated context of the
activity - these three factors impact upon the self-regulation
strategies that the student then considers relevant for applica-
tion [12]. Lichtinger and Kaplan [13] call for the identification
of domain and context-specific purposes of engagement, and
the articulation of types of SRL strategies that would be desir-
able for students within that domain. Further, the development
of effective domain-specific SRL strategies, such as domain-
based design and planning, can assist in the application and de-
velopment of other SRL strategies [14]. Kramer [15] describes
the difference between novice and expert software engineering
students as their ‘ability to perform abstract thinking and to
exhibit abstraction skills’.

The categorisation of ‘expert-novice’ [16], a subset of
novices who are able to progress quickly in their develop-
ment of discipline knowledge, presents us with an interesting

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.153

243

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.153

243 ICSE 2015, Florence, Italy
Joint SE Education and Training

Fig. 1: CS-specific successful strategies in software development process.

TABLE VII: Final year cohort general unsuccessful SRL strategies
and their indicated frequency (total count = 45).

Category Freq % Freq

Time management 32 71.1%
No specific strategy 12 26.7%
Underestimated time 7 15.6%
Procrastination 5 11.1%
Poor prioritisation of competing demands 3 6.7%
Poor time management 3 6.7%
Avoiding difficult tasks 2 4.4%
Assume nothing will go wrong 0 0.0%
Fixed timetable - insufficient 0 0.0%

Assess Difficulty 9 20.0%
Underestimated complexity 4 8.9%
Did not assess difficulty 3 6.7%
Lack of fundamental skills 1 2.2%
Misunderstood requirements 1 2.2%

Personal management 3 6.7%
Assessment achievement focus 2 4.4%
No reflection leading to change 1 2.2%

Decompose Problem 1 2.2%
Did not decompose 1 2.2%

Build Knowledge 0 0.0%
Did not seek help or ignored help 0 0.0%
Not attending class 0 0.0%

A. Design as Strategy

The spectrum of using design as strategy varies across
cohorts, as shown in Fig. 2.

In contrast to novices who tend to design after coding or
at best design in parallel with coding, final year students are
more mature in their approach. The strategy employed by a
final year student is in general that of designing a solution,

TABLE VIII: Final year cohort CS-specific unsuccessful SRL strate-
gies and their indicated frequency (total count = 17).

Strategy Freq % Freq

Development Process 17 100.00%
Incomplete design 11 64.71%
Do not follow development plan 3 17.65%
Insufficient testing 2 11.76%
Develop design after coding 1 5.88%
Develop design concurrently with coding 0 0.00%

code

design

(a) Novice strategies (b) Final year strategy (c) Validating design

design

code

test

design

validate
design

code

test

or

code design

Fig. 2: Spectrum of design as strategy across cohorts.

coding it, testing the code, and, if necessary, either refining
or refactoring the code or the design. Despite the significant
reduction in development time that the validation of design
before coding brings, few students report using it. A student
comments:

“usually I’ll draw diagrams and execute my algorithm by
hand to verify that it’s going to work as I’d expect. ”

248248 ICSE 2015, Florence, Italy
Joint SE Education and Training

A Study on the Role of Software
Architecture in the Evolution
and Quality of Software

* Impact of architecture
on evolution?

* Problem: documentation
* Reverse engineer!
* heuristics, IR, DM, …
* e.g. modularisation

* Architectural bad smells
* x-module co-change
* 20% defects, 2× time2fix

http://bibtex.github.io/MSR-2015-KouroshfarMBXMC.html
http://dx.doi.org/10.1109/MSR.2015.30

A Study on the Role of Software Architecture in
the Evolution and Quality of Software

Ehsan Kouroshfar∗, Mehdi Mirakhorli†, Hamid Bagheri∗, Lu Xiao‡, Sam Malek∗, and Yuanfang Cai‡
∗Computer Science Department, George Mason University, USA

†Software Engineering Department, Rochester Institute of Technology, USA
‡Computer Science Department, Drexel University, USA

Abstract—Conventional wisdom suggests that a software sys-
tem’s architecture has a significant impact on its evolution.
Prior research has studied the evolution of software using the
information of how its files have changed together in their
revision history. No prior study, however, has investigated the
impact of architecture on the evolution of software from its
change history. This is mainly because most open-source software
systems do not document their architectures. We have overcome
this challenge using several architecture recovery techniques. We
used the recovered models to examine if co-changes spanning
multiple architecture modules are more likely to introduce bugs
than co-changes that are within modules. The results show that
the co-changes that cross architectural module boundaries are
more correlated with defects than co-changes within modules,
implying that, to improve accuracy, bug predictors should also
take the software architecture of the system into consideration.

Index Terms—Software Repositories, Software Architecture,
Defects.

I. INTRODUCTION

Software engineers have developed numerous abstractions
to deal with the complexity of implementing and maintaining
software systems. One of those abstractions is software ar-
chitecture, which has shown to be particularly effective for
reasoning about the system’s structure, its constituent ele-
ments and the relationships among them. Software architecture
enables the engineers to reason about the functionality and
properties of a software system without getting involved in
low-level source code and implementation details.

At the outset of any large-scale software construction project
is an architectural design phase. The architecture produced
at this stage is often in the form of Module View [10],
representing the decomposition of the software system into
its implementation units, called architectural modules, and
the dependencies among them.1 This architecture serves as
a high-level blueprint for the system’s implementation and
maintenance activities.

Well-designed software architecture employs the principle
of separation of concern to allocate different functionalities
and responsibilities to different architectural elements com-
prising the system [18], [23]. Conventional wisdom suggests
that it is easier to make changes to a software system that

1The notion of architectural module should not be confused with module
traditionally used in the literature to refer to files or classes. Here, we
use the notion of module to mean architecturally significant implementation
artifacts, as opposed to its typical meaning in the programming languages.
Architectural modules represent the construction units (subsystems), and
therefore, also different from software components that represent the runtime
units of computation in the Component-Connector View [10].

has a well-designed architecture. Conversely, bad architecture,
manifested as architectural bad smells [18], can increase the
complexity, possibly leading to poor software quality [23]. In
particular, scattered functionality, a well-known architectural
bad smell, increases the system’s complexity by intermingling
the functionality across multiple architectural modules. While
certain level of concern scattering is unavoidable due to non-
functional concerns (e.g., security), a good architecture tries
to minimize it as much as possible.

Monitoring the complexity of making changes to an evolv-
ing software system and measuring its effect on software qual-
ity are essential for a mature software engineering practice. It
has been shown that the more scattered the changes among
a software system’s implementation artifacts such as source
files and classes, the higher is the complexity of making those
changes, thereby the higher is the likelihood of introducing
bugs [22]. In addition, co-changes (i.e., multiple changed files
committed to a repository at the same time) have shown to be
good indicators of logically coupled concerns [17], which are
known to correlate with the number of defects [5], [13].

However, a topic that has not been studied in the prior
research, and thus the focus of this paper, is whether co-
changes involving several architectural modules(cross-module
co-changes) have a different impact on software quality than
co-changes that are localized within a single module (intra-
module co-changes). Two insights seem to suggest that not
all co-changes have the same effect. First, an architectural
module supposedly deals with a limited number of concerns,
and thus co-changes localized within an architectural module
is likely to deal with less concerns than those that crosscut
the modules. Second, it is reasonable to assume in a large-
scale software system, the developers are familiar with only a
small subset of the modules, and thus the more crosscutting
the co-changes, the more difficult it would be for the developer
to fully understand the consequences of those changes on the
system’s behavior.

Given that a large body of prior research has leveraged
co-change history for building predictors (e.g., predicting
bugs in a future release of the software) [12], [22], [27],
[37], [41], a study of this topic is highly relevant, as it has
the potential to support the construction of more accurate
predictors by leveraging architecture information. In addition,
empirical evidence corroborating our insights would underline
the importance of software architecture in the construction and
maintenance of software. In fact, the approach would pave the
way for building predictors of architectural bad smells based

2015 12th Working Conference on Mining Software Repositories

978-0-7695-5594-2/15 $31.00 © 2015 IEEE
DOI 10.1109/MSR.2015.30

246

Modelling the Evolution of
Development Topics using
Dynamic Topic Models

* Tasks evolve with sw
* Can be grouped by topic
* Strength evolution
* Content evolution
* (never together)

* Use unstructured repos
* Visualise!

http://bibtex.github.io/SANER-2015-HuSLL.html
http://dx.doi.org/10.1109/SANER.2015.7081810

Modeling the Evolution of Development Topics
using Dynamic Topic Models

Jiajun Hu⇤, Xiaobing Sun⇤‡, David Lo†, Bin Li⇤‡
⇤School of Information Engineering, Yangzhou University, Yangzhou, China

†School of Information Systems, Singapore Management University, Singapore
‡State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

jiajunhu.yzu.edu@gmail.com, xbsun@yzu.edu.cn, davidlo@smu.edu.sg, lb@yzu.edu.cn

Abstract—As the development of a software project progresses,

its complexity grows accordingly, making it difficult to under-

stand and maintain. During software maintenance and evolution,

software developers and stakeholders constantly shift their focus

between different tasks and topics. They need to investigate into

software repositories (e.g., revision control systems) to know what

tasks have recently been worked on and how much effort has

been devoted to them. For example, if an important new feature

request is received, an amount of work that developers perform

on ought to be relevant to the addition of the incoming feature.

If this does not happen, project managers might wonder what

kind of work developers are currently working on.

Several topic analysis tools based on Latent Dirichlet Alloca-

tion (LDA) have been proposed to analyze information stored in

software repositories to model software evolution, thus helping

software stakeholders to be aware of the focus of development

efforts at various time during software evolution. Previous LDA-

based topic analysis tools can capture either changes on the

strengths of various development topics over time (i.e., strength

evolution) or changes in the content of existing topics over

time (i.e., content evolution). Unfortunately, none of the existing

techniques can capture both strength and content evolution. In

this paper, we use Dynamic Topic Models (DTM) to analyze

commit messages within a project’s lifetime to capture both

strength and content evolution simultaneously. We evaluate our

approach by conducting a case study on commit messages of two

well-known open source software systems, jEdit and PostgreSQL.

The results show that our approach could capture not only how

the strengths of various development topics change over time,

but also how the content of each topic (i.e., words that form the

topic) changes over time. Compared with existing topic analysis

approaches, our approach can provide a more complete and

valuable view of software evolution to help developers better

understand the evolution of their projects.

I. INTRODUCTION

Mining unstructured software repositories (e.g., bug reports,
mailing lists, commit messages, etc.) has emerged as a research
direction over the past decade, which has achieved substantial
success in both research and practice to support software
maintenance [1]–[3]. These studies have shown that interesting
and practical results can be obtained from mining these software
repositories, thus allowing maintainers or managers to better
understand how software evolves.

Unlike structured contents in software repositories (e.g.,
source code, execution traces, change logs, etc.), unstructured
contents are often harder to analyze because the data is often
vague and noisy [4], making it time-consuming for project

stakeholders to manually analyze software repositories. One of
recent advanced techniques is to use topic analysis tools (topic
models), such as Latent Dirichlet Allocation (LDA) [5], to
automatically extract topics from textual repositories to explore
and organize the underlying structure of software documents
[6]–[16]. Topic models can be used to discover a set of ideas or
themes (aka., topics) that well describe the entire corpus. Topics
are collections of words that co-occur frequently in the entire
corpus and usually have a close semantic relationship. More
specifically, a topic model can represent a set of documents
as a set of topics, where each document contains one or more
of these topics, and each topic is composed of a set of words
that appear in the repository.

Understanding how development topics evolve, i.e., change,
in a software repository over time can help project stakeholders
to understand and monitor activities performed in their project
at various time points during project’s lifetime. For example,
project managers can understand what tasks have recently been
worked on and how much effort has been devoted to each task
by retrieving revision control systems [10], while developers
can understand the evolution of certain features of source code
by mining source code repository [6], [9].

To help developers understand software evolution, a number
of LDA-based approaches have been proposed. Thomas et
al. applied the Hall model [17] to analyze the entire history
of source code documents to recover information on how
the strengths (i.e., popularity) of various topics change over
time [6], [9]. They ran LDA once on all versions of a software
project to get a set of topics, and then computed several metrics
to represent the strength of a topic for each of the version. In
such a way, their approach can capture the strength evolution
of the development topics. However, the content of a topic
(i.e., the set of words that form a topic), never changes across
the versions. On the other hand, Hindle et al. applied the Link
model [18] which runs LDA for each time window separately
and then used a post-processing phase to link topics which
are similar enough across successive time windows [10]. Their
approach can capture changes in the content of each topic over
time (i.e., content evolution). Unfortunately, it cannot recover
the strength of a topic across all time windows – for some
time windows, some topics do not exist and are expressed as
combinations of other topics. Thus, none of existing approaches
can capture both strength and content evolution.

978-1-4799-8469-5/15/$31.00

c� 2015 IEEE

SANER 2015, Montréal, Canada

3

Modelling the Evolution of
Development Topics using
Dynamic Topic Models

* Tasks evolve with sw
* Can be grouped by topic
* Strength evolution
* Content evolution
* (never together)

* Use unstructured repos
* Visualise!

http://bibtex.github.io/SANER-2015-HuSLL.html
http://dx.doi.org/10.1109/SANER.2015.7081810

Modeling the Evolution of Development Topics
using Dynamic Topic Models

Jiajun Hu⇤, Xiaobing Sun⇤‡, David Lo†, Bin Li⇤‡
⇤School of Information Engineering, Yangzhou University, Yangzhou, China

†School of Information Systems, Singapore Management University, Singapore
‡State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

jiajunhu.yzu.edu@gmail.com, xbsun@yzu.edu.cn, davidlo@smu.edu.sg, lb@yzu.edu.cn

Abstract—As the development of a software project progresses,

its complexity grows accordingly, making it difficult to under-

stand and maintain. During software maintenance and evolution,

software developers and stakeholders constantly shift their focus

between different tasks and topics. They need to investigate into

software repositories (e.g., revision control systems) to know what

tasks have recently been worked on and how much effort has

been devoted to them. For example, if an important new feature

request is received, an amount of work that developers perform

on ought to be relevant to the addition of the incoming feature.

If this does not happen, project managers might wonder what

kind of work developers are currently working on.

Several topic analysis tools based on Latent Dirichlet Alloca-

tion (LDA) have been proposed to analyze information stored in

software repositories to model software evolution, thus helping

software stakeholders to be aware of the focus of development

efforts at various time during software evolution. Previous LDA-

based topic analysis tools can capture either changes on the

strengths of various development topics over time (i.e., strength

evolution) or changes in the content of existing topics over

time (i.e., content evolution). Unfortunately, none of the existing

techniques can capture both strength and content evolution. In

this paper, we use Dynamic Topic Models (DTM) to analyze

commit messages within a project’s lifetime to capture both

strength and content evolution simultaneously. We evaluate our

approach by conducting a case study on commit messages of two

well-known open source software systems, jEdit and PostgreSQL.

The results show that our approach could capture not only how

the strengths of various development topics change over time,

but also how the content of each topic (i.e., words that form the

topic) changes over time. Compared with existing topic analysis

approaches, our approach can provide a more complete and

valuable view of software evolution to help developers better

understand the evolution of their projects.

I. INTRODUCTION

Mining unstructured software repositories (e.g., bug reports,
mailing lists, commit messages, etc.) has emerged as a research
direction over the past decade, which has achieved substantial
success in both research and practice to support software
maintenance [1]–[3]. These studies have shown that interesting
and practical results can be obtained from mining these software
repositories, thus allowing maintainers or managers to better
understand how software evolves.

Unlike structured contents in software repositories (e.g.,
source code, execution traces, change logs, etc.), unstructured
contents are often harder to analyze because the data is often
vague and noisy [4], making it time-consuming for project

stakeholders to manually analyze software repositories. One of
recent advanced techniques is to use topic analysis tools (topic
models), such as Latent Dirichlet Allocation (LDA) [5], to
automatically extract topics from textual repositories to explore
and organize the underlying structure of software documents
[6]–[16]. Topic models can be used to discover a set of ideas or
themes (aka., topics) that well describe the entire corpus. Topics
are collections of words that co-occur frequently in the entire
corpus and usually have a close semantic relationship. More
specifically, a topic model can represent a set of documents
as a set of topics, where each document contains one or more
of these topics, and each topic is composed of a set of words
that appear in the repository.

Understanding how development topics evolve, i.e., change,
in a software repository over time can help project stakeholders
to understand and monitor activities performed in their project
at various time points during project’s lifetime. For example,
project managers can understand what tasks have recently been
worked on and how much effort has been devoted to each task
by retrieving revision control systems [10], while developers
can understand the evolution of certain features of source code
by mining source code repository [6], [9].

To help developers understand software evolution, a number
of LDA-based approaches have been proposed. Thomas et
al. applied the Hall model [17] to analyze the entire history
of source code documents to recover information on how
the strengths (i.e., popularity) of various topics change over
time [6], [9]. They ran LDA once on all versions of a software
project to get a set of topics, and then computed several metrics
to represent the strength of a topic for each of the version. In
such a way, their approach can capture the strength evolution
of the development topics. However, the content of a topic
(i.e., the set of words that form a topic), never changes across
the versions. On the other hand, Hindle et al. applied the Link
model [18] which runs LDA for each time window separately
and then used a post-processing phase to link topics which
are similar enough across successive time windows [10]. Their
approach can capture changes in the content of each topic over
time (i.e., content evolution). Unfortunately, it cannot recover
the strength of a topic across all time windows – for some
time windows, some topics do not exist and are expressed as
combinations of other topics. Thus, none of existing approaches
can capture both strength and content evolution.

978-1-4799-8469-5/15/$31.00

c� 2015 IEEE

SANER 2015, Montréal, Canada

3

Fig. 4. Example topic evolutions estimated from PostgreSQL. For two topics, we illustrate: (a) the top ten most frequent words at eight month lags (b)
the strength evolution by mapping NA values to timestamps (c) the content evolution by mapping TF values of several notable words within the topic to
timestamps.

to bug fix from PostgreSQL’s repository. Topic 3 contains
common words such as fix, bug, patch, problem, typo and
broken, while topic 14 contains common words such as error,
messag, report, fix, elog, failur and log. We investigated the
top matching messages related to these two topics respectively
to identify the differences between them. We found that topic
3 emphasized on fixing a bug and resolving it immediately
while topic 14 emphasized on recording an error message in
bug reports when meeting a bug or error, with developers
sometimes trying to fix it, sometimes just recording it. Finally,
we put these two topics together as we did in jEdit. We found
the the total strength varies from 7% to 21% with an average
of 12%, which is very high compared with other topics. So it
seems that the development work related to bug fixing makes
up a big part of the whole work in PostgreSQL’s development
iteration.

Building and Configuration. The focus of topic 6 is on the
building or configuration of system files (such as Makefiles)
because the common words contained in it are make, build,

makefil, thread, configur, instal and win (as shown in Figure 4).
We found that the topic’s strength reached to peak around Mar.
2004, and meanwhile the TF of thread became obviously high
around this time. So it seems that much effort was devoted to
this topic and to some degree the topic may be more relevant to
thread than any other time. To figure out whether we are correct,
we investigated into the commits related to this topic around
2004. As a result, we found that thread compile is requested
during this time as some messages such as the enabling of
threads for the OS or letting configure enable threads occurred
frequently.

There are also some other development topics, which
include interval style and date format, database connection,
documentation, regression test, module add, data types and
file.

B. Comparison with the Link Model and Hall Model
In our last exploratory pass, we compared the results

produced by the Link Model, which provides content evolution,

10

Mining Software Contracts for
Software Evolution

http://bibtex.github.io/ICSME-2014-YanMG.html
http://dx.doi.org/10.1109/ICSME.2014.76

!"#"#$%&'()*+,-%.'#),+/)0%(',%&'()*+,-%12'34)"'#%
%

5+#%5+#6%!+00"7"3"+#'%!-#+,"#"6%8"33"+7%9,"0*'3:%
;-<+,)7-#)%'(%.'7<4)-,%&/"-#/-%+#:%1#$"#--,"#$%

=#"2-,0")>%'(%.+3"(',#"+6%&+#%;"-$'%
?+%@'33+6%=&AB%

C>+>+#6%77-#+,"#"6%*$$DE/0B4/0:B-:4%
%
%

Abstract!" #$%&'(&$&)(" $&*" (+,-.'%,&" $/(" %01,/'$&'" 1$/'2"
3,/" $--" 2.))(223.-" 2,3'4$/(" 1/,5()'26" 7&" /()(&'" 8($/29" +(/2%,&"
),&'/,-" 282'(02":$+("1-$8(*"$";(8"/,-(" %&" 2,3'4$/("*(+(-,10(&'"
1/,)(226" <,'" ,&-8" *," ':(8" 1/,+%*(" $" 0($&2" ',"),,/*%&$'("
1/,=/$00(/29" ,/=$&%>(" $&*"0$&$=(" 2,./)("),*(9" ?.'" ':(8" $-2,"
1(/2%2'"':("(+,-.'%,&":%2',/8",3"':("2,./)("),*("%&',"':(%/"2,3'4$/("
/(1,2%',/%(26" #%&%&=" 2,3'4$/(" /(1,2%',/%(2" :$2" 1/,+%*(*" 0$&8"
%&2%=:'2" ,&" ':(" (+,-.'%,&" ,3" 2,3'4$/(9" ?,':" 3,/" /(2($/):(/2" $&*"
1/$)'%'%,&(/26" 7&" ':%2" 1$1(/"4(" 1/,1,2(" ':$'" +(/2%,&(*" 2,3'4$/("
),&'/$)'2"@"0%&(*"3/,0"2,3'4$/("/(1,2%',/%(2"@")$&"?("$"1,4(/3.-"
',,-"3,/"?(''(/".&*(/2'$&*%&="$&*"2.11,/'%&="2,3'4$/("(+,-.'%,&6"
A,,-%&="2.11,/'"%2")/%'%)$-9"*.("',"':("),01-(B%'%(2",3"),&3%=./%&=9"
),01%-%&=9" $&*" /.&&%&=" ':(" 2,3'4$/(" '," 1/,*.)(" 0($&%&=3.-"
%&3(//(*"),&'/$)'26" "A:%2"1$1(/"),&'/%?.'(2"?,':" '():&%C.(2"$&*"
',,-" 2.11,/'" 3,/" *,4&-,$*%&=9" ?.%-*%&=9" $&*" $&$-8>%&=" ,1(&"
2,./)(" 2,3'4$/(" 3/,0" 2,)%$-"),*%&=" 2%'(2" -%;(" D%'E.?6" A:(" ',,-"
$.',0$'%)$--8" 1/,*.)(2" $" *(2)/%1'%,&" ,3" 2,3'4$/(" (+,-.'%,&"
/(1/(2(&'(*"?8"+(/2%,&2",3"1/,=/$0"%&+$/%$&'26

Keywords— software evolution; version control; contracts;
program analysis; software testing

FB! FGHIJ;=.HFJG%
!':-,#% 0'()*+,-% <,'K-/)0% ,-3+>% '#% L-,0"'#% .'#),'3%

&>0)-70% ML.&N%)'% O-3<% :-2-3'<-,0% /'774#"/+)-% +#:%7+#+$-%
P4$% ("Q-0% +#:% 0'()*+,-% ,-3-+0-0B% 8-33RS#'*#% L.&% "#/34:-%
.L&%TUV6%&LG%TWV6%+#:%9")%TXVB%L.&%O+2-%+%/-#),+3%,-<'0")',>%
*O-,-% +33% +4)O',"Y-:% <,'$,+77-,0% /+#% 4<3'+:%)O-",% /O+#$-0B%
HO"0% ,-<'0")',>%7+"#)+"#0%+33%2-,0"'#0%'(%)O-%0'()*+,-%/':-Z% ")%
+30'% -#+P3-0% +#+3>Y"#$% :"((-,-#/-0% +7'#$% 2+,"'40% 0'()*+,-%
,-3-+0-0B% !'0)% "#:40),"+3% 0'()*+,-% <,'K-/)0% 4<:+)-%)O-",%
<,':4/)0% *O-#% +% #-*% 0)+P3-% 2-,0"'#% M',% +% 7"3-0)'#-N% "0%
+2+"3+P3-%)'% ,-3-+0-B% [-)*--#% ,-3-+0-0% <,'$,+77-,0% *',S% '#%
#-*%(-+)4,-0%',%("Q%,-<',)-:%P4$06%+#:%<40O%)O-",%/O+#$-0%)'%)O-%
,-<'0")',>B%8O-#%)O-%#-*%2-,0"'#% "0% ,-+:>6% +% 0#+<0O')% '(%)O-%
,-<'0")',>% "0%)+S-#% +#:%)O-% /':-% "0% /'7<"3-:%)'% <,':4/-%)O-%
#-Q)%2-,0"'#%'(%)O-%<,'$,+7B%F#%/-,)+"#%/+0-0%)O-%:-2-3'<7-#)%
)-+70%/+#%-2-#%,-2-,)%)O-",%<,':4/)%P+/S%)'%+%<,-2"'40%2-,0"'#%
)O+)% *+0% <-,0"0)-:% "#%)O-% ,-<'0")',>%)'% ,-7'2-% <,'P3-70%
"#),':4/-:%"#%)O-%3+)-0)%2-,0"'#B%
HO-,-(',-6%L.&%,-<'0")',"-0%<,'2":-%+%O"0)',"/+3%2"-*%'(%)O-%

0'()*+,-%-2'34)"'#B%&4/O%"#(',7+)"'#%/+#%P-%O-3<(43%"#%)+/S3"#$%
7+#>% /O+33-#$"#$% 0'()*+,-% -#$"#--,"#$% <,'P3-706% 04/O% +0\%
,-40"#$% 0'()*+,-% /'7<'#-#)06% :-P4$$"#$6% <,-:"/)"#$% (4)4,-%
/':-%/O+#$-06%+#:%7',-B%

F#%)O"0%<+<-,%*-%3-2-,+$-%)O"0%:+)+%P>%(",0)%40"#$%;+"S'#%T]V%
(,+7-*',S%(',%/,-+)"#$%/'#),+/)0%(',%-+/O%7-)O':%"7<3-7-#)-:%
"#%)O-% :"((-,-#)% 2-,0"'#0% '(% 0'4,/-% /':-6% +#:%)O-#% ":-#)"(>"#$%
O'*%)O-0-% /'#),+/)0% /O+#$-% +/,'00% :"((-,-#)% 2-,0"'#0B% H'%)O"0%
-#:% *-% /,-+)-:% +% 0-7"R+4)'7+)"/%)''3%)O+)% :'*#3'+:0% 0'4,/-%
/':-%(,'7%9")%,-<'0")',"-06%P4"3:0%)O-%<,'K-/)%40"#$%+%7':"("-:%
2-,0"'#% '(% A<+/O-% !+2-#% T^V% <,'K-/)% 7+#+$-7-#)%)''36% +#:%
40-0%;+"S'#%)'%-Q),+/)%/O+#$-0%"#%7-)O':%+4)'7+)"/+33>B%F#%'4,%
-Q<-,"7-#)06% *-% :-7'#0),+)-%)*'% <')-#)"+3% P-#-(")0% '(%)O"0%
+<<,'+/O% P>% 0O'*"#$% O'*% /-,)+"#% ,-(+/)',"#$0% +#:% P4$% ("Q-0%
+,-%":-#)"("-:%P>%'4,%+<<,'+/OB%
8-%0),4/)4,-%)O-%,-7+"#:-,%'(%)O"0%<+<-,%+0%('33'*0B%F#%)O-%

#-Q)% 0-/)"'#6% *-% +#+3>Y-%)O-% ,-0-+,/O% ,-3+)-:%)'% 7"#"#$%)O-%
0'4,/-% /':-% O"0)',>% (',% :"0/'2-,"#$% 40-(43% "#(',7+)"'#% (,'7%
/-,)+"#% (+/-)0% '(%)O-% /':-B% HO-#% "#% &-/)"'#% X% *-% :"0/400%)O-%
)''30%+#:%<,+/)"/-0%)O+)%04<<',)%'4,%+<<,'+/O%)'%4#:-,0)+#:%)O-%
-2'34)"'#% '(% 0'()*+,-% 0>0)-70B% F#% 0-/)"'#%]%*-% <,-0-#)% 0'7-%
-Q<-,"7-#)+3% ,-043)0%)O+)% *-% :"0/400% "#% 0-/)"'#% ^B% _"#+33>% *-%
<,-0-#)%'4,%/'#/340"'#0%+#:%'4)3"#-%(4)4,-%*',SB%

FFB! I1?AH1;%8JI`%
J#-% (,-a4-#)3>% 2"0")-:% <,'P3-7% "0% O'*% :-2-3'<-,0% /+#%

7+S-%)O-%7'0)%40-%'(%)O-%3-$+/>%/':-B%F#%TbV%,-0-+,/O-,0%7"#-%
"#)'%0'()*+,-%,-<'0")',>%+#:%("#:%,-3-2+#)%AcF%40+$-%-Q+7<3-0%
P+0-:% '#% /+33R$,+<O% "#(',7+)"'#B% &"7"3+,3>6% TdV% ("#:0% /':-%
0#"<<-)0% P+0-:% '#%)O-% "#)-,+/)"'#% <+))-,#0B% HO-#% ,-0-+,/O-,0%
+<<3>% /-,)+"#% :+)+% 7"#"#$% +3$',")O70% TeV% P+0-:% '#%)O-%
"#(',7+)"'#% ('4#:B% HO-% O"0)',"/+3% "#(',7+)"'#% "0% +30'% O-3<(43%
(',% :-P4$$"#$B% TfV% "7<,'2-0%),+:")"'#+3% 0)+)"/% P4$% ("#:"#$%
<,'/-00% P>% 0-+,/O"#$% "#)'% 0'4,/-% /':-% /O+#$-% O"0)',"-0% (',%
<,-2"'403>% ("Q-:% P4$0B% TUgV% 0O'*0% O'*% 2-,0"'#"#$% /+#% O-3<%
7+S-% :-P4$$"#$% 7',-% -((-/)"2-% +#:% -(("/"-#)B% I-0-+,/O-,0%
$-#-,+33>%"#0<-/)%)O-%0'4,/-%/':-%+#:%,-3+)-%0#"<<-)0%*")O%)><-0%
'(%P4$0%)O->%:-("#-:6%)O-#%40-%)O"0%"#(',7+)"'#%)'%+00"0)%(4)4,-%
:-P4$$"#$% TfVB% HO-,-% +,-% 7',-% ,-0-+,/O% 0/-#+,"'0% *O-,-%)O-%
0'4,/-% /':-% -2'34)"'#% "#(',7+)"'#% O-3<0B% _',% -Q+7<3-6%
,-0-+,/O-,0%/+#%40-%")%)'%<,-:"/)%(4)4,-%/':-%/O+#$-0%TUUV6%TUWVB%
F#% +::")"'#%)'% O-3<"#$% *")O% /':"#$% +/)"2")"-06% +#+3>Y"#$%
0'()*+,-% ,-<'0")',"-0% /+#% O-3<% 4#:-,0)+#:% +% *":-,% ,+#$-% '(%
+0<-/)0% '(% 0'()*+,-% -2'34)"'#6% 3"S-% :-2-3'<-,0h% -((',)0B% _',%
-Q+7<3-6%TUXV%)+S-0%+0%"#<4)%)O-%/'77")%3'$0%+#:%P4$%,-<',)0%)'%
:-)-/)% iO')0<')0j% *O-,-% O"$O-,% :-2-3'<7-#)% +/)"2")"-0% +,-%
"#:"/+)-:B%
F#% 0477+,>6% 7'0)% ,-0-+,/O-,0% +#+3>Y-% /':-% O"0)',"-0% "#%

+>0%)O+)%+,-%)"$O)3>%/'4<3-:%")O6%P4)%/'#),"P4)-%)O-%7'0)%)'%

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE
DOI 10.1109/ICSME.2014.76

472

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE
DOI 10.1109/ICSME.2014.76

471

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE
DOI 10.1109/ICSME.2014.76

471

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE
DOI 10.1109/ICSME.2014.76

471

* Version control systems
* git, svn, cvs

* Program contract
* pre- & postcond, inv
* “requires”, “ensures”…

* Bugfixs & contracts coevolve
* Some things easier to RE
* from contracts

* http://github.com/ybank/inv-research

Visualising the Evolution of
Systems and Their Library
Dependencies

http://bibtex.github.io/VISSOFT-2014-KulaRGII.html
http://dx.doi.org/10.1109/VISSOFT.2014.29

Visualizing the Evolution of Systems and their
Library Dependencies

Raula Gaikovina Kula∗, Coen De Roover∗†, Daniel German∗‡, Takashi Ishio∗, Katsuro Inoue∗
∗ Osaka University, Osaka, Japan † Vrije Universiteit Brussel, Brussels, Belgium

‡ University of Victoria, Canada
Email: {raula, coen, cderoove, ishio, inoue}@ist.osaka-u.ac.jp

dmg@uvic.ca

Abstract—System maintainers face several challenges stem-
ming from a system and its library dependencies evolving
separately. Novice maintainers may lack the historical knowledge
required to efficiently manage an inherited system. While some
libraries are regularly updated, some systems keep a dependency
on older versions. On the other hand, maintainers may be
unaware that other systems have settled on a different version
of a library. In this paper, we visualize how the dependency
relation between a system and its dependencies evolves from
two perspectives. Our system-centric dependency plots (SDP)
visualize the successive library versions a system depends on
over time. The radial layout and heat-map metaphor provide
visual clues about the change in dependencies along the system’s
release history. From this perspective, maintainers can navigate
to a library-centric dependants diffusion plot (LDP). The LDP is
a time-series visualization that shows the diffusion of users across
the different versions of a library. We demonstrate on real-world
systems how maintainers can benefit from our visualizations
through four case scenarios.

I. INTRODUCTION

Dependence on third-party software libraries has become
standard practice in both open source and industrial software
engineering [1], with a vast source of libraries from large
repositories such as SourceForge1 and Maven Central2. Sys-
tems now rely on several dependencies of different libraries
such as ASM3, GOOGLE-GUAVA4, JUNIT5 and popular frame-
works like SPRING 6 and HIBERNATE 7. As these libraries each
evolve independently from the system and from each other,
tracking their evolution becomes important for the maintainers
of a system.

As part of software maintenance, upgrading (or updating
which we will use interchangeably) to a newer version of
an outdated library may seem an obvious decision with
advantages such as patched vulnerabilities, access to new
features and continued support. However, deciding whether
to upgrade requires careful consideration for systems with
complex dependencies. For instance, knowledge of which
dependencies were adopted at the same time may indicate

1http://sourceforge.net/
2http://mvnrepository.com/
3http://asm.ow2.org/
4https://code.google.com/p/guava-libraries/
5http://junit.org/
6https://spring.io/
7http://hibernate.org/

relevance. Maintainers then can use this information to trace
and assess respective affected system structures. Knowledge
about a system’s past upgrade decisions with respect to a
library can help maintainers. Examples include significant
dependency changes such as dropped and adopted libraries.
Such historical information is particularly useful for novice
maintainers and maintainers of poorly documented systems
with many dependencies.

More seasoned maintainers, on the other hand, can benefit
from knowledge about upgrade decisions made by different
systems. Examples include identifying opportunities for up-
grading to a newer version of a library as well as opportunities
for migrating to a different library altogether. For instance,
many systems might settle for a particular version because
the next one has introduced many breaking API changes.
Recognizing migration opportunities requires considering the
dependency decisions of systems with similar dependencies.
Many systems might abandon a particular library in favour of
an equivalent one that is more frequently maintained or has
better documentation.

In this paper, we visualize the evolution of systems and
their library dependencies from two perspectives. Our System-
centric Dependency Plot (SDP) provides an intuitive overview
of the evolution of the dependencies of a system as it evolves.
Different types of dependency changes can be discerned easily.
Maintainers can differentiate between dependencies that are
regularly updated and those that do not change. We use a heat-
map metaphor to characterize the willingness of a system to
adopt newer versions of a library as they are released.

From within the SDP, users can access library-specific usage
and diffusion information by selecting a single dependency.
The Library-centric dependents Diffusion Plots (LDP) that is
shown to this end incorporates the “wisdom-of-the-crowd” by
analyzing how other systems use a library. LDPs visualize the
diffusion of dependent systems between the different versions
of a library as well as movement of systems between each
version.

We demonstrate the usefulness of both visualizations in
four maintenance scenarios. In addition, we discuss interesting
visual observations in visualizations of real-world systems and
libraries. We provide the following two contributions:

• We present a visualization to explain the current state of
a software system using important dependency changes

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE
DOI 10.1109/VISSOFT.2014.29

127

Visualising the Evolution of
Systems and Their Library
Dependencies

http://bibtex.github.io/VISSOFT-2014-KulaRGII.html
http://dx.doi.org/10.1109/VISSOFT.2014.29

Visualizing the Evolution of Systems and their
Library Dependencies

Raula Gaikovina Kula∗, Coen De Roover∗†, Daniel German∗‡, Takashi Ishio∗, Katsuro Inoue∗
∗ Osaka University, Osaka, Japan † Vrije Universiteit Brussel, Brussels, Belgium

‡ University of Victoria, Canada
Email: {raula, coen, cderoove, ishio, inoue}@ist.osaka-u.ac.jp

dmg@uvic.ca

Abstract—System maintainers face several challenges stem-
ming from a system and its library dependencies evolving
separately. Novice maintainers may lack the historical knowledge
required to efficiently manage an inherited system. While some
libraries are regularly updated, some systems keep a dependency
on older versions. On the other hand, maintainers may be
unaware that other systems have settled on a different version
of a library. In this paper, we visualize how the dependency
relation between a system and its dependencies evolves from
two perspectives. Our system-centric dependency plots (SDP)
visualize the successive library versions a system depends on
over time. The radial layout and heat-map metaphor provide
visual clues about the change in dependencies along the system’s
release history. From this perspective, maintainers can navigate
to a library-centric dependants diffusion plot (LDP). The LDP is
a time-series visualization that shows the diffusion of users across
the different versions of a library. We demonstrate on real-world
systems how maintainers can benefit from our visualizations
through four case scenarios.

I. INTRODUCTION

Dependence on third-party software libraries has become
standard practice in both open source and industrial software
engineering [1], with a vast source of libraries from large
repositories such as SourceForge1 and Maven Central2. Sys-
tems now rely on several dependencies of different libraries
such as ASM3, GOOGLE-GUAVA4, JUNIT5 and popular frame-
works like SPRING 6 and HIBERNATE 7. As these libraries each
evolve independently from the system and from each other,
tracking their evolution becomes important for the maintainers
of a system.

As part of software maintenance, upgrading (or updating
which we will use interchangeably) to a newer version of
an outdated library may seem an obvious decision with
advantages such as patched vulnerabilities, access to new
features and continued support. However, deciding whether
to upgrade requires careful consideration for systems with
complex dependencies. For instance, knowledge of which
dependencies were adopted at the same time may indicate

1http://sourceforge.net/
2http://mvnrepository.com/
3http://asm.ow2.org/
4https://code.google.com/p/guava-libraries/
5http://junit.org/
6https://spring.io/
7http://hibernate.org/

relevance. Maintainers then can use this information to trace
and assess respective affected system structures. Knowledge
about a system’s past upgrade decisions with respect to a
library can help maintainers. Examples include significant
dependency changes such as dropped and adopted libraries.
Such historical information is particularly useful for novice
maintainers and maintainers of poorly documented systems
with many dependencies.

More seasoned maintainers, on the other hand, can benefit
from knowledge about upgrade decisions made by different
systems. Examples include identifying opportunities for up-
grading to a newer version of a library as well as opportunities
for migrating to a different library altogether. For instance,
many systems might settle for a particular version because
the next one has introduced many breaking API changes.
Recognizing migration opportunities requires considering the
dependency decisions of systems with similar dependencies.
Many systems might abandon a particular library in favour of
an equivalent one that is more frequently maintained or has
better documentation.

In this paper, we visualize the evolution of systems and
their library dependencies from two perspectives. Our System-
centric Dependency Plot (SDP) provides an intuitive overview
of the evolution of the dependencies of a system as it evolves.
Different types of dependency changes can be discerned easily.
Maintainers can differentiate between dependencies that are
regularly updated and those that do not change. We use a heat-
map metaphor to characterize the willingness of a system to
adopt newer versions of a library as they are released.

From within the SDP, users can access library-specific usage
and diffusion information by selecting a single dependency.
The Library-centric dependents Diffusion Plots (LDP) that is
shown to this end incorporates the “wisdom-of-the-crowd” by
analyzing how other systems use a library. LDPs visualize the
diffusion of dependent systems between the different versions
of a library as well as movement of systems between each
version.

We demonstrate the usefulness of both visualizations in
four maintenance scenarios. In addition, we discuss interesting
visual observations in visualizations of real-world systems and
libraries. We provide the following two contributions:

• We present a visualization to explain the current state of
a software system using important dependency changes

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE
DOI 10.1109/VISSOFT.2014.29

127

(a) FINDBUGS System

!"#$%
!"#$%&'()*+

!#(,-.*

!(//('0&$(

"*'0('

".((12

"0('

,3!40('&!(.*&#"+#

,3!40('&)353%$')

,3!40('&,36.0

,3!40('&/3++*.&#"+#,3!40('&0/$#* ,31300$05

,0('&#$%

,0('&0$/+#*

,0('&0/3.5

,0.788&3+$

,-'$5

0*.1#*5&3+$

0+.$'"&5*05

0+.$'"&9*%

0+.$'"&9*%/1!
6(/

:

:

!"#$%$&'()*+,-"*.'/&012

3)(+5*.

).(++*)

$)#*.

-+)35*.

;<=>

;<>;

;<?>

8<;;
!"#$%$&'31$2"*.'42%51

(b) FASTJSON System

!

!

!"#$%$&'()*+,-"*.'/&012

"#$%&'(

#($%%'#

)#*'(

+%#"&'(

,-,,

,-./

,-/,

,-0/

!"#$%$&'31$2"*.'42%51

(c) ATOMSERVER System (d) SYMMETRIC System

Fig. 5: Comparison of the SDP between the different systems

Using the Figure 2, we demonstrate how Rusty can use the
SDP:

• S1. Rusty wants to understand the regularity of system
dependency changes. Firstly, from a holistic view in
Figure 2(a), Rusty can deduce alot of the dependencies
were updated in a version just before the current version.
Visually, Rusty can easily differentiate which dependen-
cies were upgraded and the current usage. For instance,
the gradient of the colours of the latest versions suggest
that the current dependency relations have higher usage
by peer systems.

Additionally, Figure 5 depicts the SDP of different sys-
tems. Intuitively, we can see that FINDBUGS and FASTJSON
have more regular updating of their dependency relation-
ships than ATOMSERVER and SYMMETRIC. Note that both
ATOMSERVER and SYMMETRIC have ceased to upgrade their
dependency relations, especially with the latest system ver-

sions.
Therefore to address S1, Rusty now understands the reg-

ularity of upgrade and decide which specific libraries are
candidates for upgrading.

• S2. Rusty wants to understand what important structural
dependency events have occurred. First, Rusty looks
for dropped dependency relations. Referring back to
Figure 2(a), he notices that asm− util, asm− xmil and
asm− analysis were dropped at the same time, thus
hinting there may be an association between them.
Additionally, FINDBUGS system specific plugins such
as findBugs − ant, findBugsGui and coreplugin
libraries are no longer depended upon.

Therefore to address S2, Rusty now understands the impor-
tant changes and associated dependency relations.

133

Visualising the Evolution of
Systems and Their Library
Dependencies

http://bibtex.github.io/VISSOFT-2014-KulaRGII.html
http://dx.doi.org/10.1109/VISSOFT.2014.29

Visualizing the Evolution of Systems and their
Library Dependencies

Raula Gaikovina Kula∗, Coen De Roover∗†, Daniel German∗‡, Takashi Ishio∗, Katsuro Inoue∗
∗ Osaka University, Osaka, Japan † Vrije Universiteit Brussel, Brussels, Belgium

‡ University of Victoria, Canada
Email: {raula, coen, cderoove, ishio, inoue}@ist.osaka-u.ac.jp

dmg@uvic.ca

Abstract—System maintainers face several challenges stem-
ming from a system and its library dependencies evolving
separately. Novice maintainers may lack the historical knowledge
required to efficiently manage an inherited system. While some
libraries are regularly updated, some systems keep a dependency
on older versions. On the other hand, maintainers may be
unaware that other systems have settled on a different version
of a library. In this paper, we visualize how the dependency
relation between a system and its dependencies evolves from
two perspectives. Our system-centric dependency plots (SDP)
visualize the successive library versions a system depends on
over time. The radial layout and heat-map metaphor provide
visual clues about the change in dependencies along the system’s
release history. From this perspective, maintainers can navigate
to a library-centric dependants diffusion plot (LDP). The LDP is
a time-series visualization that shows the diffusion of users across
the different versions of a library. We demonstrate on real-world
systems how maintainers can benefit from our visualizations
through four case scenarios.

I. INTRODUCTION

Dependence on third-party software libraries has become
standard practice in both open source and industrial software
engineering [1], with a vast source of libraries from large
repositories such as SourceForge1 and Maven Central2. Sys-
tems now rely on several dependencies of different libraries
such as ASM3, GOOGLE-GUAVA4, JUNIT5 and popular frame-
works like SPRING 6 and HIBERNATE 7. As these libraries each
evolve independently from the system and from each other,
tracking their evolution becomes important for the maintainers
of a system.

As part of software maintenance, upgrading (or updating
which we will use interchangeably) to a newer version of
an outdated library may seem an obvious decision with
advantages such as patched vulnerabilities, access to new
features and continued support. However, deciding whether
to upgrade requires careful consideration for systems with
complex dependencies. For instance, knowledge of which
dependencies were adopted at the same time may indicate

1http://sourceforge.net/
2http://mvnrepository.com/
3http://asm.ow2.org/
4https://code.google.com/p/guava-libraries/
5http://junit.org/
6https://spring.io/
7http://hibernate.org/

relevance. Maintainers then can use this information to trace
and assess respective affected system structures. Knowledge
about a system’s past upgrade decisions with respect to a
library can help maintainers. Examples include significant
dependency changes such as dropped and adopted libraries.
Such historical information is particularly useful for novice
maintainers and maintainers of poorly documented systems
with many dependencies.

More seasoned maintainers, on the other hand, can benefit
from knowledge about upgrade decisions made by different
systems. Examples include identifying opportunities for up-
grading to a newer version of a library as well as opportunities
for migrating to a different library altogether. For instance,
many systems might settle for a particular version because
the next one has introduced many breaking API changes.
Recognizing migration opportunities requires considering the
dependency decisions of systems with similar dependencies.
Many systems might abandon a particular library in favour of
an equivalent one that is more frequently maintained or has
better documentation.

In this paper, we visualize the evolution of systems and
their library dependencies from two perspectives. Our System-
centric Dependency Plot (SDP) provides an intuitive overview
of the evolution of the dependencies of a system as it evolves.
Different types of dependency changes can be discerned easily.
Maintainers can differentiate between dependencies that are
regularly updated and those that do not change. We use a heat-
map metaphor to characterize the willingness of a system to
adopt newer versions of a library as they are released.

From within the SDP, users can access library-specific usage
and diffusion information by selecting a single dependency.
The Library-centric dependents Diffusion Plots (LDP) that is
shown to this end incorporates the “wisdom-of-the-crowd” by
analyzing how other systems use a library. LDPs visualize the
diffusion of dependent systems between the different versions
of a library as well as movement of systems between each
version.

We demonstrate the usefulness of both visualizations in
four maintenance scenarios. In addition, we discuss interesting
visual observations in visualizations of real-world systems and
libraries. We provide the following two contributions:

• We present a visualization to explain the current state of
a software system using important dependency changes

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE
DOI 10.1109/VISSOFT.2014.29

127

(a) FINDBUGS System

!"#$%
!"#$%&'()*+

!#(,-.*

!(//('0&$(

"*'0('

".((12

"0('

,3!40('&!(.*&#"+#

,3!40('&)353%$')

,3!40('&,36.0

,3!40('&/3++*.&#"+#,3!40('&0/$#* ,31300$05

,0('&#$%

,0('&0$/+#*

,0('&0/3.5

,0.788&3+$

,-'$5

0*.1#*5&3+$

0+.$'"&5*05

0+.$'"&9*%

0+.$'"&9*%/1!
6(/

:

:

!"#$%$&'()*+,-"*.'/&012

3)(+5*.

).(++*)

$)#*.

-+)35*.

;<=>

;<>;

;<?>

8<;;
!"#$%$&'31$2"*.'42%51

(b) FASTJSON System

!

!

!"#$%$&'()*+,-"*.'/&012

"#$%&'(

#($%%'#

)#*'(

+%#"&'(

,-,,

,-./

,-/,

,-0/

!"#$%$&'31$2"*.'42%51

(c) ATOMSERVER System (d) SYMMETRIC System

Fig. 5: Comparison of the SDP between the different systems

Using the Figure 2, we demonstrate how Rusty can use the
SDP:

• S1. Rusty wants to understand the regularity of system
dependency changes. Firstly, from a holistic view in
Figure 2(a), Rusty can deduce alot of the dependencies
were updated in a version just before the current version.
Visually, Rusty can easily differentiate which dependen-
cies were upgraded and the current usage. For instance,
the gradient of the colours of the latest versions suggest
that the current dependency relations have higher usage
by peer systems.

Additionally, Figure 5 depicts the SDP of different sys-
tems. Intuitively, we can see that FINDBUGS and FASTJSON
have more regular updating of their dependency relation-
ships than ATOMSERVER and SYMMETRIC. Note that both
ATOMSERVER and SYMMETRIC have ceased to upgrade their
dependency relations, especially with the latest system ver-

sions.
Therefore to address S1, Rusty now understands the reg-

ularity of upgrade and decide which specific libraries are
candidates for upgrading.

• S2. Rusty wants to understand what important structural
dependency events have occurred. First, Rusty looks
for dropped dependency relations. Referring back to
Figure 2(a), he notices that asm− util, asm− xmil and
asm− analysis were dropped at the same time, thus
hinting there may be an association between them.
Additionally, FINDBUGS system specific plugins such
as findBugs − ant, findBugsGui and coreplugin
libraries are no longer depended upon.

Therefore to address S2, Rusty now understands the impor-
tant changes and associated dependency relations.

133

(a) FINDBUGS System

!"#$%
!"#$%&'()*+

!#(,-.*

!(//('0&$(

"*'0('

".((12

"0('

,3!40('&!(.*&#"+#

,3!40('&)353%$')

,3!40('&,36.0

,3!40('&/3++*.&#"+#,3!40('&0/$#* ,31300$05

,0('&#$%

,0('&0$/+#*

,0('&0/3.5

,0.788&3+$

,-'$5

0*.1#*5&3+$

0+.$'"&5*05

0+.$'"&9*%

0+.$'"&9*%/1!
6(/

:

:

!"#$%$&'()*+,-"*.'/&012

3)(+5*.

).(++*)

$)#*.

-+)35*.

;<=>

;<>;

;<?>

8<;;
!"#$%$&'31$2"*.'42%51

(b) FASTJSON System

!

!

!"#$%$&'()*+,-"*.'/&012

"#$%&'(

#($%%'#

)#*'(

+%#"&'(

,-,,

,-./

,-/,

,-0/

!"#$%$&'31$2"*.'42%51

(c) ATOMSERVER System (d) SYMMETRIC System

Fig. 5: Comparison of the SDP between the different systems

Using the Figure 2, we demonstrate how Rusty can use the
SDP:

• S1. Rusty wants to understand the regularity of system
dependency changes. Firstly, from a holistic view in
Figure 2(a), Rusty can deduce alot of the dependencies
were updated in a version just before the current version.
Visually, Rusty can easily differentiate which dependen-
cies were upgraded and the current usage. For instance,
the gradient of the colours of the latest versions suggest
that the current dependency relations have higher usage
by peer systems.

Additionally, Figure 5 depicts the SDP of different sys-
tems. Intuitively, we can see that FINDBUGS and FASTJSON
have more regular updating of their dependency relation-
ships than ATOMSERVER and SYMMETRIC. Note that both
ATOMSERVER and SYMMETRIC have ceased to upgrade their
dependency relations, especially with the latest system ver-

sions.
Therefore to address S1, Rusty now understands the reg-

ularity of upgrade and decide which specific libraries are
candidates for upgrading.

• S2. Rusty wants to understand what important structural
dependency events have occurred. First, Rusty looks
for dropped dependency relations. Referring back to
Figure 2(a), he notices that asm− util, asm− xmil and
asm− analysis were dropped at the same time, thus
hinting there may be an association between them.
Additionally, FINDBUGS system specific plugins such
as findBugs − ant, findBugsGui and coreplugin
libraries are no longer depended upon.

Therefore to address S2, Rusty now understands the impor-
tant changes and associated dependency relations.

133

Conclusion
* Software evolves

* Software evolution obeys certain laws

* Software rots in time (quality, complexity…)

* 70% of software engineers do maintenance

* Many software systems are legacy

* Forward, reverse and re-engineering

* Actively researched field

* Learn to build tools

Start with !

Questions?

