Introduction to
Software
Evolution

Dr. Vadim Zaytsev aka @grammarware
UvA, MSc SE, 25 October 2015

//www.informationis@eautiful.net/visualizations/million—lines—of—code/

http

Codebases

thousand

— TN ON

hundred

Millions of lines of code

simple iPhone game app

Unixv1.0

1971
Win32/Simile virus
average iPhone app
Pacemaker
Photoshop v. 1.0

1990
Camino

web browser

Quake 3 engine

3D Video game system

Space Shuttle

amillion lines of code

o

—

10

N

40

50

APP

BROWSER

MACHINE

60

70

80

o

a0

amillion lines of code
18,000 pages of printad text

War And Peacex 14, or

Ulysses x 25, or
I'he Catcherin The Ryex 63

CryEngine 2

3D video game system

Bacteria

Syphillis { Treponema pallidum)

Age of Empires online

CESM Climate Model

National Center for Atmospheric Research

R O SN W -_- o

R

ORCANISM

ITEO%

//www.informationisbeautiful.net/visualizations/million-1lines—-of-code/

http

CESM Climate Model

National Center for Atmospheric Research

F-22 Raptor fighter jet

Linux Kernel2.20

Core o -lo—

Jurassic Park codebase

source: Dennis Nedry

Hubble Space Telescope

Unreal engine 3

3D video game gystem

Windows 3.1

1992

Large Hadron Collider

(root software)

US military drone

(control software only)

Photoshop C.S. 6

Image editing software

Windows NT 3.1

1993

-‘E\'E‘..','

HD DVD Player on XBox

Just the player)

needed to repair HealthCare.gov
apparently

Mars Curiosity Rover

Martian ground vehicle probe

Linux kernel 2.6.0

203

LJUS

Google Chrome

latest

World of WarCraft

server only

Boeing 787

avionics & online support systems only

Windawe NT' 2 B

' . —.’ .- .. N ——

uppes

estimate

60

/

')

ball

40

.net/visualizations/million—lines?gﬁ?code/

//www.information%ﬁ?%autiful

http

Windows NT 3.5

1993

Firefox
latest version

Chevy Volt

electnic car

Intuit Quickbooks

accounting software

Windows NT 4.0

1996

Android

mobile device operating system

MozillaCore

cors code at heart of all Mozilla’s software

MySQL

database language

Boeing 787

total flight software

Linux 3.1

recent version

Apache Open Office

open-source office software

F-35 Fighter jet

2012

I~

288%

e0

60

70

80

ol

90

Microsoft Office 2001

Windows 2000

Microsoft Office for Mac
2008

Symbian

mobile operating system

Windows 7
2000

Windows XP
2001

!

l.net/visualizations/milli

beau

rmétionis

//www.1info

http

Symbian

mobile operating system

)

= Windows 7
8 20009
|

© Windows XP
I 2001
wn

)

S' Microsoft Office 2013
™~

=N

é\z\ Large Hadron pdl[der

Windows Vista

2007

Microsoft Visual Studio 2012

Facebook
including backend code)

US Army Future Combat System

fast battlefeld network system (aborted)

Debian 5.0 codebase

free, open-source operating system

I

f—rof

!". 4
E ‘l

oo

Mac OS X “Tiger”
v10.4

\O | 10 20 3 40 50 60 70 al a0 :
Car software
average modern high-end car
Mouse*
Total DNA basepairs in genome

— billion 1 10 20 40 60 8 00

Google
all mternet services

»

lger”
g ---------
Mouse
wogle

G

MacOS X ™

/9pP02—10-S9UT]—UOT]1TW/SUOT1LZT1BNSTA/13U"1NLTINLIQSTUOTIRWIOLUT "MMM/ /:d11Y

Schedu le

w44 Introduction V.Zaytsev
W45 Metaprogramming J.Vinju
W46 Reverse Engineering V.Zaytsev
W47 Software Analytics M.Bruntink
W48 Clone Management M.Bruntink
W49 Source Code Manipulation V.Zaytsev
W50 Legacy and Renovation TBA
W51 Conclusion V.Zaytsev

Schedu le

w44 Introduction V.Zaytsev
W45 Metaprogramming J.Vinju
W46 Reverse Engineering V.Zaytsev
W47 Software Analytics M.Bruntink
W48 Clone Management M.Bruntink
W49 Source Code Manipulation V.Zaytsev
W50 Legacy and Renovation TBA
W51 Conclusion V.Zaytsev

Schedu le

w44

Introducti

V.Zaytsev

W45

Metaprogram

Series 1: :

J.Vinju

V.Zaytsev

implement a set of
metrics

L

Source Code Manipl

. '

W50

W51

Honours Track

avat Review a paper

V = AV = \/

Deadlines &
Deliverables

x 2 Nov: Series @ (Rascal test)
*x 17 Nov: Series 1 = % grade
x1 Dec: Review = % grade

*x 15 Dec: Series 2 = % grade

Teachers

Dr. Vadim Zaytsev Dr. Magiel Bruntink

N s-\ ¥ o : N
1 % -
S -+ N " =
‘ : AT - :
- 1‘ R e - S -
l) N . 3 5 L SOS
r's - !’ CR? ¥ fod

‘Davy Landman Jouke Stoel

Software Types

Program Types: S

* S—type programs
*x “specifiable”
* problem formally defined by a spec
* automated acceptance possible

* such software

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program Types: S

formal

may statement k controls the
relate of pr'obl em sroduction

To

real PROGRAM
world

provides
mqybe of solution

intferest to S-type

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Program lypes: P

* P—=type programs
* “problem-solving”
* problem models a real-world task
x 1mperfectly
* qualitative acceptance

* they

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program lypes: P

P-type
real
world

absTracT
view of world

- @ requirements
specification

b
.
|

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Program lypes: E

* E-Type programs
* “embedded”
* solution 1s a part of the world
* acceptance 1s subjective

* they are

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Program lypes: E

, n abstract
requirements view of world

specification

Steve Easterbrook, http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

http://www.cs.toronto.edu/~sme/CSC444F/slides/L20-SoftwareMaintenance.pdf

Lehman’'s Laws of
Software Evolution

Lehman’s Laws (1/8)

* E-system rots unless adapted
* the process never stops
* (true for P-systems as well)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (2/8)

* E-system becomes more complex
* evolving means complicating

* (unless we do something)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (3/8)

* E-system evolution 1s SRP
* obeys certain statistical Llaws
* (distribution close to normal)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (4/8)

x* E—system dev activity 1s invariant
* throughout its lifetime
x (does not depend on resources)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (5/8)

* E-system changes per release
* 1nvariant
* throughout 1ts lifetime
* (too little: bored;
too much: overwhelmed)

M.M.Lehman, Programs, Life Cycles and Laws of Software Evolution, IEEE 68(9), 1980.

Lehman’s Laws (6/8)

* E-system must add features over time
* to keep users satisfied
x (expectations creep)

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws (7/8)

* E-system perceived quality declines
* 1nternal as well as external

+* (unless constantly maintained)

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws (8/8)

* E-system evolution 1s a
* feedback system

* multi-level

* multi-Lloop

* multi—agent

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Lehman’s Laws

* Continuing Change

* Increasing Complexity

* Self-regulation

* Conservation of Organisational Stability
* Conservation of Familiarity

* Continuing Growth

* Declining Quality

* Feedback System

M.M.Lehman, J.F.Ramil, P.D.Wernick, D.E.Perry, W.M.Turski,
Metrics and Laws of Software Evolution — The Nineties View, METRICS, 1997.

Maintenance
Types

Maintenance

* Modification of a software product
after delivery to correct faults, to
improve performance or other
attributes, or to adapt the product

to a modified environment

TEEE 1219, 1993

Malntenance phases

* Introductory
* user support!
* Growth
* correcting faults!
* Maturity
* enhancements!
* Decline
* technology replacement!

Hans van Vliet, Software Engineering: Principles and Practice. Jon Wiley & Sons, 20009.

Types of maintenance

* Corrective
* Adaptive
* Perfective

* Preventive

B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations, 1980.

Types of maintenance

* Corrective
* Adaptive
* Perfective

* Preventive

B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations, 1980.

Types of maintenance

* Corrective

* Adaptive

* Perfective
* user enhancement
x efficiency

x other

* Preventive

B.P.Lientz, E.B.Swanson, Software Maintenance Management, A Study of the Maintenance
of Computer Application Software in 487 Data Processing Organizations, 1980.

Top 5 problems

* Quality of documentation

* User demand for enhancements

* Competing demands for maintainers’ time
* Meeting scheduled commitments

* Turnover 1n user organisations

S.L.Pfleeger, Software Engineering: Theory and Practice, Prentice Hall, 1998.

Is 1t hopeless?

* Higher quality
+ less (c) maintenance
* Anticipating changes
x less (a&p) maintenance
* Better tuning to user needs
+ less (p) maintenance
* Less code
x less (%) maintenance

Maurice ter Beek, http://www.liacs.nl/~mtbeek/se-ma.pdf

Roadmap

* Metaprogramming

* Reverse engineering

* Software analytics

* Clone management

* Source code manipulation

* Legacy

State of the Art

v

http://bibtex.github.io

AYSE Detecting Complex Changes

*k Metamodel evolves

* Follow user actions
* Detect complex patterns

* Enrich evolution trace

During Metamodel Evolution

Detecting Complex Changes During
Metamodel Evolution

Djamel Eddine Khelladi'®) | Regina Hebig!, Reda Bendldou
Jacques Robin!, and Marie-Pierre (‘

1 Sorbonne Universités, UPMC Univ Paris 06, UMR. 7606, F-75005 Paris, France

djamel.khelladi@lip6.fr
OQOuest Nanterre La Defense, F-92001 Nanterre, France

add, delete, and update element
ion of model

er intention and complex chang
trace. In this paper, we propo
multaneously add

evaluation o
d by our heur:

Keywords: Metamodel - Evolution -

1 Introduction

In the process of building a domain- speuhc modf*hng lam_,uaOP (DSML) multiple
reloped, tried out, i
7 one of our industrial partne

ns of the DSML are u:

model h om a
). Automatically detecting
f the metamod

http://bibtex.github.10/CAISE-2015-KhelladiHBRG.html
http://dx.doi.0rg/10.1007/978-3-319-19069-3_17

ESEC Automated Unit Test Generation
for Evolving Software

x Software evolves.

Automated Unit Test Generation for Evolving Software

*x How about test cases? e

Regent Court, 211 Portobello, Sheffield, UK, S1 4DP
sina.shamshiri@sheffield.ac.uk

ABSTRA(from small refz

| |
As develog) a 0 50 e p . \ of large new fo However, s
0 ensure that the originally intended functional ct the originaly Intencec
f the s has no . As a result, dev 7' rocuelr puss
| | 2 ite nd scute them afte king chang S

Moreover, since
future changes, sometimes new test

a ntnp opagate the infected state mthcnutpur

]] erating suc er only iy s
o bility issues, especially . frer every single change . ‘I
seq s is required for propagation. We propose . problem has been well stud
)} at aims to automatically - perature [18] and many techniques such as test
can reveal functionality che given two on and n tion ha e

. pre-change
tests to identify uumh*unled

in finding
S he quality of thc written tests.
ing to the PIE model 1], to
to first execute the fault, infect the state and finally prop-

it .
. . - . te it to the output. While several techni xist f
Categories and Subject Descriptors o mentine exiotins tost oultos (ae [10(I]T']]:‘, ene
[Software Engineering]: Tes ging g regress st 13, e techniques /
Tools; 1.2.8 [Artificial Intelllgence Problem { reaching the to prop-

Solv mg,, Control Methods, and Search agate the infected state m H.e uutput can p\pludp. which

5, we propose a tec h-
aset of w

M N"] generated :) Vithont deponding o, xing et O ot
. INTRODUCTION based algorithm [8] with the objective of reaching and propa-
AN EV'II‘ UI I ER test suite e sty e e e e

O | d changes throughout the life-cycle of the software. The: We have > qonted 0 '” pproach nz voSurT

Permission to make digital or hard copies of all or part of this work for personal or

H c om use s f vi it copies are not made or distributed 0 ples with propagation issues where covering
version D B o advantage and that cop his notio Il citad cl lone does not propagate the cha ged state to
aracting with c Toc ‘v o republi the uutput] Further attempts to evaluate the effectivene
coverage D o e ot of o cting real regtession faults revealed
Fitness tat
state old new

new k Function distance version version

version control-flow

distance \/

Detection of Software
ICPC Evolution Phases based on
Development Activities

S f _L h . B A Important + Rapid + Different B K: Less ; apid + Differe
u B: Important + Rapid + Similar L: Le).+ Rapid + Similar
* O twa re EVO . l S t O ry . B C:Important + Slow + Different B M: Less-Imp. + Slow + Different
D: Important + Slow + Similar = N: Less-Imp. + Slow + Similar

* commits — fine—grailned

* releases — coarse

ICEFaces

* Something 1n between?

* 8 kinds of phases:

* changes: 1important/not

ArgoUML JFreeCh.

* dev: rapid/slow

* change types: different/same

jor development ac
overview to help soft- c ze a time period, and to detect recurrent patterns

978-1-4673-8
DOI 10.1109;

http://bibtex.github.io/ICPC-2015-BenomarASPS.html
http://dx.doi.0rg/10.1109/1CPC.2015.11

* Expert/novice devs
* Look at students

* first year
* final year

¥ Use diagrams to explain
design

& Use design to understand
problem

Develop design before coding
¥ Comprehensive testcases
20% K Use design principles or

standards
Other

(b) Final year

Evolution of Software
Development Strategies

'ACM 37th IEEE International Conference on Software Engineering

Evolution of Software Development Strategies

Katrina Falkner, Claudia Szabo.

Vivian and Nickolas Falkner

School of Computer Science

The Universit:
Adelaide.

meta-cognitive Y
of software development skills and processes. This development
happens over time and is influenced by many factors, however
understanding by tes der to develop
s and materials to from novice to

oftw i In this paper, we analyse the evolu
of learning strategies of novice, first year students, to expert, final
year students. We analyse reflections on software development
processes from students in an introductory software development
nd compare them to those of final students, in a

ing design before coding in
, but that several areas still
st in learning development.

I. INTRODUCTION

The development of deep learning strategies, self-regulation,
abstract thinking and metacognitive strategies are vital in order
to assist students in achieving success [1], [2]. A student
with self-regulated learning behaviours will set their goals,
determine and allocate their resources, as well as manage
their time effectively [3]. Without this fundamental level of
metacognition, students cannot direct their knowledge in a
useful and constructive manner and thus are unlikely to su
ceed. A significant aspect in the development of self-regulating
learning (SRL) strategies is the ability to monitor and reflect
upon those strategies within the context of
(CS) as a discipline, enabling the individual to identify their
success or failure, identify strategies to apply in specific
contexts, and develop new strategies [4] . Allwood [6]
i more general strategies
ather than the more powerful specialised strategies employed

ding to Robillard [7], expert programmers

planning process, based upon

nceptual knowledge required to complete the specified

task, enabling a breadth-first search of the problem space.

Novice programmers, however, build their planning and design

processes upon their knowledge of programming languages,

resulting in a depth-first search and a focus on concrete rather
than abstract

The transition from novi is assisted by reflection
on prior successes and failures [8], followed by analysis of
potential areas for improvement. Before we can assist our
students in the p f reflecti n, we

ategies for the

of Adelaide,

CS context [9]. Therefore, we must develop an understanding
of those discipline specific strategies that can be successfully
learnt and adopted by students [10].
In our previous work [11], we analysed studen
on their SRL processes as applied to introductor
development. Using a grounded theory model of
analysis, we were able to identify SRL strategies that are spe-
c to software development, expressed in the students” own
words and relative to th S /e presented a
detailed analysis of the nature of these discipline-specific SRI
strategies and how these strategies contribute to the learning
of novice students. In this paper, we explore the evolution
ccific SRL strategies through the combined
analysis of a cohort of novice students, and a second cohort of
final year students. We present an analysis of the evolution of
ategies from novice to expert learners, with the aim of
ying points where the development and application of
identified SRL can be improved. The analysis of this evolution
is fundamental for the development of targeted scaffolding and
support to address identified issues. Our findings show that
students develop a range of sophisticated strategies, that can
be readily scaffolded within the curriculum.

II. RELATED WORK

elf-regulated learners have been defined by Zimmerman
as those that “plan, set goals, organise, self-monitor and
self-evaluate”. The development of SRL strategies has been
found to be a complex issue, associated with the perceived
purpose of engagement with the activity, the students self-
perception of their ability, and the situated context of the
ity - these three factors impact upon the self-regulation

tion [12]. Lichtinger and Kaplan [13] call for the identification

of domain and context-spec

the articulation of types of SRL strategies that would be desir-

able for students within that domain. Further, the development

f ive domain-spec strateg h as doma

based design and planning, ¢ i

velopment of other SRL strategies [14]. Kramer [15] desc
ftware engineering

'm abstract thinking and to

pplication and de-

students as their ‘ability
exhibit abstraction skills’.
The categorisation of ‘expert-novice’ [16], a subset of
in their devel
ment of discipline knowledge, presents us with an interesting

novices who are able to progress quicl

Fl
Joint SE Education and Training

* Impact of architecture

on evolution?

* Problem: documentation

* Reverse engineer!
IR, DM, ..
modularisation

* Architectural bad smells

* heuristics,
* e.g

* X—module co-change
* 20% defects, 2x time2fix

A Study on the Role of Software
Architecture 1n the Evolution
and Quality of Software

2015 12th Working Conference on Mining Software Repositories

A Study on the Role of Software Architecture in
the Evolution and Quality of Software

Ehsan Kouroshfar*, Mehdi Mirakhorli’, Hamid Bagheri*, Lu Xiaof, Sam Malek*, and Yuanfang Cai
*Computer Science Department, George Mason University, USA
ftware Engineering Department, Rochester Institute of Technology, USA
iCompu(cr Science Department, Drexel University, USA

»lbvtm —Conventional wisdom uggest that e
E e\nlutitm.

how
No p y
impm‘l of architecture on the evolution of software from its
change history. Thi b s
ems do not document their architectures. We have overcome
o ing several architecture recovery techniques. W
mine if co-changes spanning
multiple architecture modules are more likely to introduce bugs
than co-changes that are within modules. The results show that
the co-changes that cross architectural module boundaries are
more correlated with defects than co-changes within modules,
implying that, to improve accuracy, bug predictors should also
take the software architecture of the system into consideration.
Index Terms—Software Repositories, Software Architecture,
Defects.

1. INTRODUCTION

to deal with the complexit; implementing and maintaining
software systems. One of those al ions is softw ar
chitecture, which has shown to be purutulur]\ effective for
reasoning about lh

low-level s
At the out: f any large-scale s construction proj
is an architectu si The architecture produced
at this stage is often in the form of Module View [10],
representing the decomposition of the software system into
its implementation units, called architectural mudu[u and
the dependen among them.!
a high-level blueprint for the implementation
maintenance activities.
‘Well-designed software architecture employs the principle
aration of concern to allocate different functionalities
i fferent architectural elements com-

IThe notion of architectural module should not be confused with module
aditionally used in the literature to refer to files or classes. Here, we
use the notion of module to mean architecturally significant implementation
artifacts, as opposed to its typical meaning in the programming la
Architectural modules represent the construction units (subsystems), and
therefore, also different from software components that represent the runtime
units of computation in the Component-Connector View [10]

a \\'e]l—deiigned architecture. Conversely, bad architecture,
chitectural bad smells [18], can increase the
ssibly leading to poor software quality [23]. In

pdrluular ullmd functionality, a well-known architectural
bad smell, increases the system’s complexity by intermingling
the functionality across multiple architectural modules. While
certain level of concern scattering is unav ble due to non-
functional concerns (e. ity), a chitecture tries

hown that the more scattered the changes among
are system’s |mplemem.mnn artifacts such as source
ses, the high \
. thereby the higher is the likelihood of introducing
. In addition, c s (i.e., multiple changed files
mmmed to a repository at the same time) have shown to be
indicators of logica upled concerns [17], which are
l\nu\m to correlate with (he number of def [51, [13].
However, a topic that has not been studied in the prior
research, and thus the fo of this paper, is whether co-
changes involving several architectural modules(cross-module
co-changes) have a different impact on software quality than
co-changes that are localized within a single module (intra-
module co-changes). Two insights seem to suggest llul not
all ¢ h.mges have the same eﬁe . First,
module
and thus co-
is likely to deal with less concerns than those that
the modules. Second, it is reasonable to assume in a large-
scale soft ystem, the developers are familiar with only a
and thus the more crosscutting
the co-changes, the more difficult it would be for the developer
to fully understand the consequences of those changes on the
system’s behavior.
en that a large body of prior rescarch has leveraged
i rs (e.g., predicting
) [12], [22], [27),
of this topic is highly relevant, as it h
ial to support the construction of more accurate
by le ging architecture information. In addition,
empirical evidence corroborating our insights would underline
the importance of software architecture in the construction and
maintenance of software. In fact, the approach would pave the
way for building predictors of architectural bad smells based

* Tasks evolve with sw
* Can be grouped by topic
* Strength evolution
* Content evolution
never together
* Use unstructured repos

* Visualise!

Modeling the Evolution
using Dynamic

Modelling the Evolution of
Development Topics using
Dynamic Topic Models

of Development Topics
Topic Models

Jiajun Hu*, Xiaobing Sun*!, David Lof, Bin L

*School of Information Engineering, Y

chool of Information Systems, Singapore Management Univ

ngzhou Univers ‘angzhou, China

Singapore

IState Key Laboratory for Novel Software Technolog

jiajunhu.yzu.edu@gmail.com, xbsun@

s the development of a software project progresses,
grows accordingly, it difficult to under-
stand and maintain. During software maintenance and evolution,
software developers and eholders constantly shift their focus
between different tasks and topics. They need to investigate into
software repositories (e.g., revision control systems) to know what
tasks have recently been worked on and how much effort has
been devoted to them. For example, if an important new feature
request is received, an amount of work that developers perform
on ought to be relevant to the addition of the incoming feature.
If this does not happen, project managers might wonder what
ind of work developers are currently working or
Several topic analysis tools based on Latent Dirichlet Alloca-
tion (LDA) have been proposed to analyze information stored in
are repositories to model software evolution, thus helping

efforts at various time during software evolution. Previous LDA-
based topic analysis tools can capture either changes on the

hs of various development topics over time (i.e., strength
evolution) or changes in the content of existing topics over
time (i.e., content evolution). Unfortunately, none of the existing
techniques can capture both strength and content evolution. In
this paper, we use Dynamic Topic Models (DTM) to analyze
commit messages within a project’s lifetime to capture both
strength and content evolution simultaneously. evaluate our
approach by conducting a case study on commit messages of two
well-known open source software systems, jEdit and PostgreSQL.
The results show that our approach could capture not only how
the strengths of various development topics change over time,
but also how the content of each topic (i.e., words that form the
topic) changes over time. Compared with existing topic anal
approaches, our approach can provide a more complete and
valuable view of software evolution to help developers better
understand the evolution of their projects.

I. INTRODUCTION

Mining unstructured software repositories (e.g., bug reports,
mailing lists, commit messages, etc.) has emerged as a research
direction over the past decade, which has achieved substantial
success in both research and practice to support software
maintenance [1]-[3]. These studies have shown that interesting
and practical results can be obtained from mining these software
repositories, thus allowing maintainers or managers to better
understand how software evolv

Unlike structured contents in software repositories (e.g.,

urce code, execution traces, change logs, etc.), unstructured
contents are often harder to analyze because the data is often
vague and noisy [4], making it time-consuming for project

978-1-4799-8469-5/15/$31.00 © 2015 IEEE

stakeholders to manually analyze software repositories. One of
recent advanced techniques
models), such
automati
and organize the underlying structure of software documents
[6]-[16]. Topic models can be used to discover a set of idea
ics) that well describe the entire corpus. Topi
s that co-occur frequently in the entire
corpus and usually have a close semantic relationship. More
specifi a topic model can represent a set of documents
a set of topics, where each document contains one or more
and each topic is composed of a set of words

Understanding how development toj
in a software reposito

evolve, i.e., change,
roject stakeholders

at various time points during proj lifetime. For example,
project managers can understand what tasks have recently
worked on and how much effort has been devoted to each task
by retrieving revision control systems [10], while developers
can understand the evolution of certain features of source code
by mining source code repositor

To help developers understand ution, a number
of LDA-based approaches have been proposed. Thomas et
al. applied the Hall model [17] to analyze the entire history
of source code documents to recover information on how
the strengths (i.e., popularity) of various topics change over
time [6], [9]. They ran LDA once on all versions of a software
project to get a . and then
to represent the strength of a topic for
such a way, their approach can capture the strength evolution
of the development topi However, the content of a topic
(i.e., the set of words that form a topic), never changes acro:
the versions. On the other hand, Hindle et al. applied the Link
model 18] which runs LDA for each time window separately
and then used a p ng phase to link topics which
are similar enough a sive time windows [10]. Their
approach can capture changes in the content of each topic over
time (i.e., content evolution). Unfortunately, it cannot recover
the strength of a topic across all time windows — for some
time windows, some topics do not exist and are expressed
combinations of other topics. Thus, none of existing approaches
can capture both strength and content evolution.

veral metrics

SANER 2015, Montréal, Canada

Modelling the Evolution of
Development Topics using
Dynamic Topic Models

* Tasks evolve with sw

Modeling the Evolution of Development Topics

* Can be grouped by topic S o

Jiajun Hu*, Xiaobing Sun*¥, David Lo, Bin Li*
*School of Informati hou University,
3 L L o

Jan.2002 Sep.2002 May.2003 Jan.2004 Sep.2004 May.2005 Jan.2006 Sep.2006 May.2007 Jan.2008
tabl tabl tabl tabl tabl tabl tabl tabl table tabl
transact constraint transact transact transact lock constraint constraint transact transact

kei trigger constraint lock lock transact drop lock constraint constraint
trigger transact trigger constraint trigger trigger transact transact lock check

lock kei kei trigger constraint constraint lock drop trigger lock
check lock check check check drop trigger check check trigger
add check lock kei drop check alter trigger drop drop
constraint add add add kei alter check alter creat kei
alter alter drop drop delet delet inherit inherit alter commit
drop drop alter delet alter role role creat kei alter

Topic 5: SQL statement Topic 5: SQL statement

Yy

S ©
° o
a o

@= constraint
o kei

— transact
W trigger

Term-Frequenc
© © ©
o © ©
N W A

o
S
[
S
<

>
(7]
1]

R &

o
O

N

Y
©
g
(*]

2

0 0
2002.1 2003.1 20041 2005.1 2006.1 20071 2008.1 2002.1 2003.1 2004.1 2005.1 2006.1 2007.1 2008.1

Time Time

http://bibtex.github.10/SANER-2015-HuSLL.html
http://dx.doi1.0rg/10.1109/SANER.2015.7081810

Software Evolution

* VVersion control systems

Mining Software Contracts for

2014 IEEE International Conference on Software Maintenance and Evolution

*x git, svn, cvs

Mining Software Contracts for Software Evolution

Yan Yan, Massimiliano Menarini, William Griswold

La Jolla, USA

Department o nputer Science and Engineering
University of California, San Diego

{yayan, mmenarini, wgg} (icsd.edu

— Maintenance and evolution are important parts
i In recent years, version

- for all s
systems have played a key role in software development
Not only do they provide a means to coordinate
— N
programmers, organize and manage source code, but they also
’ the evolution history of the source code into their software

ories. Mining software repositories has provided many

insights on the evolution of software, both for researchers and

practitioners. In this paper we propose that versioned software

contracts — mined from software repositories — can be a powerful

tool for better understanding and supporting software evolution.

’ ’ Tooling support is critical, due to the complexities of configuring,

[]

'y id 144 compiling, nd ranning the software 6 produce measingfel
inferred contracts. This paper contributes both techniques and
tool support for downloading, building, and analyzing open

’ EER source software from social coding sites like GitHub. The tool

automatically produces a description of software evolution
represented by versions of program invariants.

Keywor software evolution; version control; contracts;
program analysis; software testing

|
1. INTRODUCTION
Modern software projects relay on Version Control
Systems (VCS) to help developers communicate and manage

bug fixes and software releases. Well-known VCS include
CVS [1], SVN [2], and Git [3]. VCS have a central repository

where all authorized programmers can upload their change
s repository maintains all versions of the software code; it
also enables analyzing differences among various software
Most industrial software projects update their

| | |
products when a new stable version (or a milestone)
available to release. Between releases programmers work on
port and push their changes to the

hen the new version is ready, a snapshot of the
taken and the code is compiled to produce the
next version of the program. In certain cases the development
n even revert their product b: i
persisted in the repository to remove problems
introduced in the latest version.

Therefore, VCS repositories provide a historical view of the
oftware evolution. Such information can be helpful in tackling
many challenging software engineering problems, such ¢

reusing software components, debugging, predicting future
code changes, and more.

* http://github.com/ybank/inv— S

In this paper we leverage this data by first using Daikon [4]
framework for creating contracts for each method implemented
in the different versions of source code, and then identifying

oss different versions. To this
end we created a semi-automatic tool that downloads source
code from Git repositories, builds the project using a modified
version of Apache Maven [5] project management tool, and
uses Daikon to extract changes in method automaticall
experiments, we demo e two potential benefits of this
approach by showing how certain refactorings and bug fixes
are identified by our approach.

We structure the remainder of th follow:
ction, we analyze the research related to mining the
source code history for discovering useful information from
certain facets of the code. Then in Section 3 we discuss the
tools and practices that support our approach to understand the
evolution of software el I tion 4 we present some

present our conclusions and outline future work.

II. RELATED WORK

One frequently visited problem is how developers can
ake the most use of the legacy code. In [6] researchers mine
into software repository and find relevant API usage examples
based on call-graph information. Similarly, [7] finds code
snippets based on the interaction patterns. Then researchers
apply certain data mining algorithms [8] based on the
information found. The historical information is also helpful
for debugging. [9] improves traditional static bug finding
process by searching into source code change histories for
previously fixed bugs. [10] shows how versioning can help
make debugging more effective and efficient. Researchers
generally inspect the source code and relate snippets with types
of bugs they defined, then use this information to assist future
debugging [9]. There are more research scena where the
source code evolution information helps. For example,
researchers can use it to predict future code changes [11], [12].
In addition to helping with coding activities, analyzing
software rep an help understand a wider range of
aspects of software evolution, like developers’ efforts. For
xample, [13] takes as input the commit logs and bug reports to
detect “hotspots” where higher development activities
indicated.

In summary, most researchers analyze code histories in
ays that are tightly coupled with, but contribute the most to

Visualising the Evolution of
Systems and Their Library

Dependencies

2014 Second IEEE Working Conference on Software Visualization

Visualizing the Evolution of Systems and their
Library Dependencies

Raula Gaikovina Kula*, Coen De Roover*!, Daniel German*¥, Takashi Ishio*, Katsuro Inoue

* Osaka University, Osaka, Japan | V

e Universiteit Brussel, Brussels, Belg

University of Victoria, Canada
Email: {raula, coen, cderoove, ishio, inoue} @ist.osaka-u
1 !

tem maintainers face several challeng
ming from a sy: and its library dependencies evolving
may lack the historical knowledge
required to efficiently manage an
libraries are regularly updated, some
on older versions. On the other hand, maintainers may be
unaware that other systems have settled on a different version
of a library. In this paper, we visualize how the dependency
relation between a system and its dependencies evolves from
two perspectives. Our system-centric dependency plots (SDP)
e library versions a system depends on
over time. The radial layout and heat-map metaphor provide
sual clues about the change in dependencies along the system’s
From this perspective, maintainers can navigate
centric dependants diffusion plot (LDP). The LDP

through four case scenario:

1. INTRODUCTION

Dependence on third-party software libraries has become
standard practice in both open source and industrial software
engineering [1], with a vast source of libraries from large
repositories such as SourceForge' and Maven Central®. S
tems now rely on several dependencies of different librarie
such SM?, GOOGLE-GUAVA*, JUNIT® and popular frame-
works like SPRING ® and HIBERNATE ". As these libraries each

e independently from the tem and from each other,
ing their evolution becomes important for the maintainers
of a system.

As part of software maintenance, upgrading (or updating
which we will use interchangeably) to a newer version of
an outdated library may seem an obvious decision with
advantages such as patched vulnerabilities, ¢ to new
features and continued support. However, deciding whether
to upgrade requires careful consideration for systems with
complex dependencies. For instance, knowledge of which
dependencies were adopted at the same time may indicate

Thttp://sourceforge.net/
hup://mvnrepository.com/
3http://asm.ow2.0

“http

Shitp://junit.org/
Shttps:/spring.io/
"hup:/hibernate.org/

978-0-76¢ 14 $31.00 © 2014 IEEE
DOI 10.1109/V FT.2014.29

n use this information to trace
respective affected system structures. Knowledge
ast upgrade decis with
intainers. Examples include sign:
such as dropped and adopted librari
particularly useful for novice
ntainers and maintainers of poorly documented systems
dependencie:
e seasoned maintainers, on the other hand, can benefit
from knowledge about upgrade decisions made by different
ems. Examples include identifying opportunities for up-
grading to a newer ver: well as opportunitie:
for migrating to a different library altogether. For instance,
many systems might settle for a particular version because
the next one has introduced many breaking API changes
Recognizing migration opportunities requires considering the
dependency decisions of systems with similar dependencie:

an equivalent one that is more frequently m:
better documentation.
In this paper, we vis

i dependencies from two perspectives. Our System-
centric Dependency Plot (SDP) provides an intuitive overview
of the evolul of the dependencies of a sy
Different types of dependency changes can be discerned easily
Maintainers can differentiate between dependencies that are
regularly updated and those that do not change. We use a heat-
map metaphor to characterize the willingness of a sy
adopt newer versions of a library as they are released.

From within the SDP, users can access library-
and diffusion information by selecting a single dependen
The Library-centric dependents Diffusion Plots (LDP) that i
shown to this end incorporates the “wi f-the. ” by
analyzing how other systems use a library. LDPs visualize the
diffusion of dependent systems between the different versions
of a library as well as mc
version.

We demonstrate the usefulness of both visualizations in
four maintenance scenarios. In addition, we discuss interesting
visual observations in visualizations of real-world sy
libraries. We provide the following two contribution:

« We present a visualization to explain the current state of

a software system using important dependency changes

@ computer
soclety

Visualising the Evolution of
Systems and Their Library
Dependencies

annotations jsr3os

Software Visualization

jFormatString . .
" Systems and their

Library Version Usage
'1 OO eit Brussel, Brussels, Belgium
asm-analysis ' e
y e} @ist.osaka-u
0 A 5 . Maintainers then can this information to trace
respective affected system structures. Knowledge
system’” st upgrade d ons with respect to a
an help maintainers. Examples include significant
'y changes such as dropped and adopted libra
orical information is particularly useful
and maintainers of poos
f' d b G U dependencies.
Im ugS .easoned maintainers, on the other hand,
1 0 25 wledge about upgrade decisions m:
Examples include identifyi
) a newer a library ell as opportunities
iting to a different library altogether. For instance,
tle for a particular version bec:
O 00 3 introduced many breaking API chang
tion opportunities requires considering the
tems with similar dependencies.
‘tems might abandon a particular library in

Library Evolution Types tlent one that is more frequently maintained or has

umentation.

o d
findbugs-ar 1y Gependncie from two perspets
+ a do p‘ter ependency Plot (SDP) provides an intuitive ov
>lution of the dependencies of a S it e
of dependency cf
n differentiate bef

d r O p p e d 1|pdaled and tho:

whor to characterize the

vithin the SDP, users can access library-specific usage
d | on infi n by sele
I e r wry-centric dependents Diffi
s end incorporates the “w
how other systems use a library. LDPs vis
of dependent systems between the different versions

updater wry as well as movement of systems between each

monstrate the usefulness of both vis

|
@ computer
soclety

Visualising the Evolution of
Systems and Their Library

Dependencies

Library Version Usage
1.00

0.75
0.50

0.25
e

Library Evolution Types

+ adopter

dropped
o idler

¢ updater

Software Visualization

" Systems and their

eit Brussel, Brussels, Belgium
nada
e} @ist.osaka-u

. Maintainers then can this information to trace
respective affected system structures. Knowledge
system’” s d spect to a
an help maintainers. Examples include significant
'y changes such as dropped and adopted libra
orical information is particularly useful
and maintainers of poorly documented systems
dependencies.
.easoned maintainers, on the other hand,
wledge about upgra
Examples include identifying opportunities for up-
) a newer n of a library ell as opportunities
iting to a different library altogether. For insta
articular version because
introduced many breaking API chang
tion opportunities requires considering the
cy decisions of systems with similar dependencies.
‘tems might abandon a particular library in
= ent one that is more frequently maintained or has
umentation.
paper, we visualize the evolution of systems and
iy dependencies from two perspecti
ependency Plot (SDP) provides an intuitive ov
>lution of the dependencies of a system as it evolvi
of dependency changes can be discerned easily.
n differentiate bel n dependencies that are
updated and those that do not change. We use a heat-
whor to characterize the willi

vithin the SDP, users can access library-specific usage
i n by sele
centric dependents Diffusion Plots (LDP) the
s end incorporates the lom-of-the-crov
how other systems use a library. LDPs vis
of dependent systems between the different versions
wry as well as movement of systems between each

monstrate the usefulness of both vis

|
@ computer
soclety

Conc lusion

* Software evolves

* Software evolution obeys certain laws

x Software rots in time (quality, complexity...)
* 70% of software engineers do maintenance

* Many software systems are legacy

* Forward, reverse and re—-engilneering

* Actively researched field

* Learn to build tools

. N\,
Start with S&#'

Questions?

N .
y
- -
| ————

