
An Industrial Case Study
in Compiler Testing

11th International Conference on Software Language Engineering
Dr. Vadim Zaytsev aka @grammarware



❖ I am @grammarware
❖ MSc (ru, nl), PhD (nl/de)
❖ Ex-researcher (UKL, CWI)
❖ Ex-lecturer (UvA)
❖ Now @ Raincode [Labs]
❖ Chief Science Officer
❖ Writes compilers for a living
❖ Last project: TIALAA (4GL)

➢ There Is A Life After AppBuilder
➢ https://www.raincode.com/technical-landscape/tialaa/

Introduction

2

https://www.raincode.com/technical-landscape/tialaa/


4GLs are [Badly Designed] DSLs

3



AppBuilder concepts are dialectic

❖ A “rule” is program
➢ not declarative

❖ A “set” is a lookup table
➢ not a set at all

❖ A “view” is a model
➢ in MVC terms

❖ “SetEncoding” is a getter
➢ while “SetVisible” is a setter

4



AppBuilder rule syntax is ambiguous

CASEOF X
CASE A B

FOO
CASE C D

BAR
ENDCASE

5

B is a value B is a part of the condition

B is a void proc B is inside of the branch

B is a proc, same type B is a part of the condition

B is a proc,
incompatible type B is inside of the branch



AppBuilder typing is not name-unique

MAP A IN A TO A

MAP A OF B TO X // might mean A OF C OF B

MAP A OF B OF C (N) TO X // the index may refer to A, B or C

6



AppBuilder semantics is special

❖ TRUNC(X, -3)

❖ DATE(‘00-00-0000’)

❖ DATE(‘00-00-0000’)+1

❖ DATE(‘00-00-0000’)-1

❖ USE RULE X // closes the window if client-client call

❖ MAP A TO B

7



Need for testing methodology

DESPERATE
need for

compiler testing
methodology

8



D-tests: direct access to runtime

9



R-tests: yes/no recognition

10



P-tests:
parsing

11

THAT ESCALATED QUICKLY



N-tests:
normalisation

12



T-tests: typing

13



S-tests: successful execution

14



15 Recognise

Pipeline

Analyse

Roundtrip

Verify

Parse

Normalise

Compile

Execute

R

P

Q

N

T

C

G

S

G

F

E

U

X

D



Tests were used:

❖ Mostly during middle stages of the project
➢ too little info early on
➢ easy to test bugfixes for regression later on

❖ To measure progress internally
➢ project planning
➢ work distribution

❖ To report to the customer
➢ challenging to communicate a CC process

16



17



18



TIALAA supports both client & server

19



Pilot study results

❖ ~4 MLOC rules,
~13 MLOC bind files,
~4 MLOC sets,
~3 MLOC panels

❖ ~42k data structures, ~17k programs
❖ 100% compilation & verification
❖ Integration testing ongoing
❖ Go into production in a few months

20



Conclusion
❖ Follow @grammarware
❖ 4GLs are bad DSLs
❖ TIALAA is there to replace AppBuilder

➢ https://www.raincode.com/technical-landscape/tialaa/
❖ Testing a compiler is a lot of work
❖ No out of the box solution
❖ No out of the box comprehensive methodology
❖ Existing papers are scarce and focused
❖ Request for SLEBoK!

➢ http://slebok.github.io
❖ Thanks! Questions?

21

t

https://www.raincode.com/technical-landscape/tialaa/
http://slebok.github.io


Testing in TIALAA

❖ G-tests: can the compiler handle the customer’s codebase?
❖ R-tests: can the parser recognise this input?
❖ F-tests: can the parser rightfully reject this input?
❖ P-tests: can the parser construct a good tree from this input?
❖ N-tests: can the normaliser rewrite this tree well?
❖ E-tests: can this input error be fixed automatically?
❖ T-tests: can this program be typed correctly?
❖ A-tests: can this program be rejected by static semantic analysis?
❖ C-tests: can this program be successfully compiled to produce a DLL?
❖ V-tests: can this program be compiled to a verified DLL?
❖ U-tests: can this problem be rightfully rejected during compilation?
❖ S-tests: can this program successfully execute to produce output?
❖ X-tests: can this program throw the right exception?
❖ D-tests: does this runtime library function work?

22



Dijkstra vs Goodenough

23


