
A Refined Model of Ill-definedness

in Project-Based Learning

Arthur Rump, Vadim Zaytsev

EduSymp @ MoDELS 2022, 25 October 2022

http://grammarware.net

What’s in the Paper?

• https:"//grammarware.net/text/
2022/illdefined.pdf

• https:"//doi.org/
10.1145/3550356.3556505

• data collection + analysis

• here let’s focus on context!

2
A Refined Model of Ill-definedness in

Project-Based Learning
Arthur Rump
Computer Science

University of Twente
The Netherlands

a.h.j.rump@student.utwente.nl

Vadim Zaytsev
Formal Methods and Tools

University of Twente
The Netherlands

vadim@grammarware.net

ABSTRACT
Project-based courses are crucial to gain practically relevant knowl-
edge in modelling and programming education. However, they
fall into the “ill-de�ned” domain: there are many possible solu-
tions; the quality of a deliverable is subjective and not formally
assessable; reaching the goals means designing new artefacts and
analysing new information; and the problem cannot always be
divided into independent tasks. In this paper, we re�ne the exist-
ing two-dimensional (veri�ability and solution space) classi�cation
of ill-de�ned classes of problems, contemplate methods and ap-
proaches for assessment of projects, and apply the model to analyse
two study units of two di�erent computer science programmes.

CCS CONCEPTS
• Social and professional topics! Computing education.

KEYWORDS
learning objectives
ACM Reference Format:
Arthur Rump and Vadim Zaytsev. 2022. A Re�ned Model of Ill-de�nedness
in Project-Based Learning. In ACM/IEEE 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’22 Companion),
October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3550356.3556505

1 INTRODUCTION
Project-based learning is a student-centred form of learning based
on the constructivist ideas that learning is context-speci�c, that
students learn best when they are actively involved in the learning
process and that learning happens through social interaction and
the sharing of knowledge [9]. Although not every implementation
of a project means that project-based learning is applied, it is also
di�cult to use projects purely for summative assessment because
students will almost always learn new things when working on a
complex project. This means that some of the bene�ts of project-
based learning are likely to occur to some degree in any course that
uses a project.

A project in project-based learning has two essential character-
istics: there is a driving question, often in the form of a problem

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS
’22 Companion), October 23–28, 2022, Montreal, QC, Canada, https://doi.org/10.1145/
3550356.3556505.

to be solved, and the learning activities result in a set of artefacts
or products, which represent students’ solutions and re�ect their
knowledge [4, 10]. The question and activities can be determined
by students or teachers, but it is important that the question is not
so constrained that the outcomes are predetermined. Blumenfeld
et al [4, p.372] note that “students’ freedom to generate artefacts
is critical, because it is through this process of generation that
students construct their knowledge.”

This freedom in generating artefacts that become the solution,
eventually delivered to the teachers for grading, leads to many
issues in assessment of that solution. Such problems are called
“ill-de�ned”, and this ill-de�nedness of a project is crucial to let
students construct their knowledge and thus learn. We will recall
the de�nition of ill-de�neness and link it to our situations in § 2.
Then, in § 3, we will introduce two study units of two di�erent
programs at our university, each being the �rst opportunity for
corresponding students to model an entire software system by
themselves by applying principles of object-oriented design. In § 4
we crystallise lessons learnt from analysing these two into concrete
re�nements on the existingmodel of ill-de�nedness. In § 5, we apply
the resulting framework to the two study units we just introduced.
The paper ends with § 7 which draws some conclusions.

2 ILL-DEFINEDNESS
A word that is commonly used for problems that do not have a
de�nite solution is ill-de�ned. Such problems have an inde�nite
endpoint, meaning that determining if the goal has been reached is
complex and imprecise, and it is one of three criteria Simon [15] (as
cited in [5], we lack access to the original) describes for calling a
problem ill-de�ned. The other two features they �nd are an inde�-
nite starting point, meaning that the problem description is vague or
incomplete, and unclear strategies for �nding a solution. Wherever
a project description mentions “good” solutions or talks about a free
selection of additional features, we see ill-de�nedness. Additionally,
software engineering has, in general, no single strategy for �nding
a solution: it always involves some creativity that starts to manifest
at use case diagrams and persists till the last line of code.

Lynch et al describe �ve features of an ill-de�ned domain [13]:
• There are multiple solutions, and which one is better is partly
subjective. This is certainly the case for project-based learn-
ing: every group will likely have very di�erent solutions,
and which follows a better style is to some degree a matter
of taste.

• There is no formal theory for determining a problem’s outcome
and testing its validity. There is no formal theory of modelling
and programming that can derive a correct and valid program

https://www.utwente.nl/
http://grammarware.net
https://grammarware.net/text/2022/illdefined.pdf
https://grammarware.net/text/2022/illdefined.pdf
https://doi.org/10.1145/3550356.3556505
https://doi.org/10.1145/3550356.3556505

Well-defined

• Understood problem

• Concrete verifiable concepts

• Subdivide and solve

• Some solutions are incorrect

• Empirical validation

• Known mathematical foundation

• Engineered artefacts

3

https://www.utwente.nl/
http://grammarware.net

Ill-defined

• Incomplete information

• Abstract concepts

• Dependent subproblems

• Multiple solutions

• Subjective criteria

• Informal validation

• Artefact design

4

Week 2 57

Figure 2.E: Sequence Diagram for change services (Exercise D-2.4)

Reader “Software Systems” — Copy for teachers and student assistants

https://www.utwente.nl/
http://grammarware.net

Ill-defined !== Bad

• Incomplete information

• Abstract concepts

• Dependent subproblems

• Multiple solutions

• Subjective criteria

• Informal validation

• Artefact design

5

• "=> ambiguous/incomplete

• "=> no absolute/teachable definitions

• "=> modularity impossible/hard

• "=> predictability limited

• "=> assessment unreliable

• "=> no formal theory to support

• "=> tasks undefined

https://www.utwente.nl/
http://grammarware.net

Ill-defined !== Good

• Incomplete information

• Abstract concepts

• Dependent subproblems

• Multiple solutions

• Subjective criteria

• Informal validation

• Artefact design

6

• "=> possible gamification

• "=> contrasting cases

• "=> modularisation is a skill

• "=> entertaining for the teacher

• "=> descriptive feedback/reflection

• "=> space for creativity

• "=> industry-relevant skill

https://www.utwente.nl/
http://grammarware.net

6 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

aSource Parser
inputOf

implements

G

hasOutput

L(G)
defines

T(G)*
⊇

∈

Type-2

∈

Parse
forest

Fig. 1. A megamodel used in an SLE course: basic notion of a grammar-derived parser

invocation. It also adds a few conceptual characteristics such as the expectations
that we start from a context-free (type 2) grammar. We also expresss that the
input does at least agree with the terminal set of the grammar. Practically, this
assumption may not hold, but the megamodel provides a good abstraction for
discussing such issues. Likewise, the indication of a parse forest is merely meant
to allow for the discussion of ambigious grammars and the different possible
strategies of parsing technologies.

The megamodel at the bottom provides a highly conceptualized view on pars-
ing, unparsing, and related operations or parts thereof. Various representation
levels (such as strings, tokens, ASTs) and various phases of parsing are called
out. In a given language implementations, several nodes and edges in the model
are irrelevant, but the megamodel allows for a systematic discussion of options
in language implementation and associated properties such as bidirectionality.

4 Variation points for SLE courses

Over the timeline and over the different courses, we experienced some variation
points for SLE courses that we discuss here.

Overlapping with MDE and CC. Conceptually, SLE is close to CC and
MDE. For instance, the concepts of parsing, semantic analysis, intermediate rep-
resentations, and code generation are integral parts of a typical CC course, which
should also play a role in an SLE course. Likewise, the concepts of metamodeling,
model transformation, and traceability are integral parts of the MDE body of
knowledge, which should also be covered in an SLE course.

However, it is practically impossible that an SLE course would cover both CC
and MDE. Historically, CC courses cover grammar classes and associated parsing
algorithms in much detail. They also cover non-trivial foundations of optimiza-
tion (e.g., flow analysis) and code generation (e.g., BURS). In contrast, an SLE
course should favor one or two state-of-the-art practical parsing approaches (such
as LL(*) and generalized LL/LR parsing) without in-depth coverage of the in-
volved algorithms. Likewise, an SLE course should only have cursory coverage,
if any, of compiler optimization and code generation. Also, an SLE course can-

Definedness is a Spectrum
7

C1

R3

R1

R2

C2

C3
R4

RL

https://www.utwente.nl/
http://grammarware.net
http://ceur-ws.org/Vol-1346/edusymp2014_paper_6.pdf
https://doi.org/10.1007/978-3-319-11653-2_4
https://commons.wikimedia.org/wiki/File:Common_base_amplifier.svg

8

Grade Forming

Analytic

Quantitative

Holistic

Val
idi

ty

Reliability

Transparency

https://www.utwente.nl/
http://grammarware.net

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Verifiable Unverifiable

9

model from https:"//doi.org/10.1109/tlt.2013.16

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1109/tlt.2013.16

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

10

model from https:"//doi.org/10.1145/3550356.3556505

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

11

model from https:"//doi.org/10.1145/3550356.3556505

empty?

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

12

model from https:"//doi.org/10.1145/3550356.3556505

empty in Algorithms for
Creative Technology

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

13

model from https:"//doi.org/10.1145/3550356.3556505

correctness in Programming
of Software Systems

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

14

model from https:"//doi.org/10.1145/3550356.3556505

scope in both cases

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

Great
variability of
solution
strategies

Known number of
strategies

One good
strategy,
several
implementations
One solution

Objective Subjective,

with rubric

Subjective,

no rubric Free choice

15

model from https:"//doi.org/10.1145/3550356.3556505

quality in both cases

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1145/3550356.3556505

• project-based learning

• embracing ill-definedness

• model is refined on one dimension

• before: verifiable, unverifiable

• after: objective, rubric, subjective, free

• more in the paper!

16

https:"//www.arthurrump.com/ & https:"//grammarware.net/

https://www.utwente.nl/
http://grammarware.net
https://grammarware.net/text/2022/illdefined.pdf
https://www.arthurrump.com/
https://grammarware.net/

