
Deriving Modernity Signatures

for Systems

with Static Analysis

Dr. Vadim Zaytsev aka @grammarware

SCAM NIER, 4 October 2022

http://grammarware.net

What’s in the Paper?

• 960900a181/960900a181.pdf

• https:"//doi.org/10.1109/
SCAM55253.2022.00027

• pp.181–185

2

Deriving Modernity Signatures for PHP Systems
with Static Analysis

Wouter van den Brink
Technical Computer Science

University of Twente
The Netherlands

w.vandenbrink@student.utwente.nl

Marcus Gerhold
Formal Methods and Tools

University of Twente
The Netherlands

m.gerhold@utwente.nl

Vadim Zaytsev
Formal Methods and Tools

University of Twente
The Netherlands

vadim@grammarware.net

Abstract—The PHP language has undergone many changes
in its syntax and grammar, with respect to both features the
language has to offer as well as the distribution of language
features used by programmers in their projects. We present a
novel method of using grammar usage statistics to calculate a
modernity signature for a PHP system, so that we can determine
its age. The system will aid developers in choosing whether or
not to execute or use a PHP system, without having to perform
an extensive inspection.

I. INTRODUCTION

In its long history and many versions, the PHP language has
undergone many changes [21]. One of the first versions of PHP
used a Perl-like syntax in HTML comments. The rewrite of the
language by Andi Gutmans and Zeev Suraski into an extensi-
ble language made it possible for other developers to add new
functionality to the language, either by modifying its syntax or
by adding new functions and data types. The language is still
evolving nowadays, with the most recent development being
the release of PHP 8.1 in November 2021. This version adds
many major additions to the syntax such as enumerations [4]
and intersection types [1]. These syntax modifications encour-
age PHP programmers to use new programming paradigms
in their code. Other adjustments introduced by new language
versions do not change the syntax, but rather modify the
available functions and their signatures. For example, PHP 8.0
introduced the str_contains(), str_starts_with()
and str_ends_with() functions. There exists a continuing
migration from resource types to standard class objects, further
elaborated by Karunaratne [12].

A. PHP Language Levels

For every PHP system, we can define its language level as
the minimum major PHP version required to be able to run the
code in the system. For example, version 9.11.0 of the Laravel
framework requires PHP version 8.0.2 or higher. The language
level is then PHP 8.0. Today, information about the minimum
required PHP version and other requirements imposed by
a PHP system is usually contained in a composer.json
file, an artefact produced by the Composer package manager,
available at https://getcomposer.org.

The PHP language level indicated in the composer.json
file by means of the minimum required PHP version does what

it says on the tin: it tells other developers wishing to use a
system what version of PHP they should install to run the code.
However, it does not tell much about the actual modernity,
or rather, the age, of the codebase. While PHP regularly
has backwards incompatible changes between major versions,
much legacy PHP code will still run without problems in later
PHP versions, or will do so with few minor modifications.

As a result, it is possible to advertise a codebase as being
compatible with a recent version of PHP, thereby implying
that the system has been recently maintained, while most of
the code is in fact very old and might contain several bugs
and security issues. The actual modernity of the code is thus
invisible to users of the system without performing extensive
analysis. Thus, we wish to reliably determine the modernity
of a PHP codebase without needing to execute the code, and
without extensive human inspection.

The remainder of the paper will be spent on answering our
main research question: to what extent can we use grammar
usage statistics to reliably determine the modernity of a PHP
system? We will explain our way of analysing the usage
statistics in § IV, describe the corpus we used in our research
in § V, report on our preliminary findings in § VI and conclude
with a discussion in § VII and closing remarks in § VIII.

II. MOTIVATION

Estimating the age of a codebase is a known problem in
software comprehension, useful for many purposes:

• Analysing IDENTIFICATION DIVISIONs and gen-
erated comments is one of the first steps in industrial
legacy codebase analysis, in order to determine the exact
language [13] and dialect [14] which define what tools
are needed to handle the code.

• Age ranges are used to partition projects into new, en-
hancement and maintenance [10].

• For frontend systems, the age of code determines ex-
plorable vulnerabilities that it inevitably contains [17].

• For comprehension purposes, the age influences coding
idioms, programming style and required expertise [3].

• For mergers and acquisitions, comparing modernities and
styles of merging codebases leads to better cost estimates.

181

2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/22/$31.00 ©2022 IEEE
DOI 10.1109/SCAM55253.2022.00027

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1109/SCAM55253.2022.00027
https://doi.org/10.1109/SCAM55253.2022.00027

Let’s Focus on the Context…

• What is the problem?

3

https://www.utwente.nl/
http://grammarware.net

Portfolio Analysis

• be me (3+ years ago)

• analyst/developer

• new potential customer

• PoC: 10000s of files

• COBOL? COPY?

• PL/I?

• HLASM?

• REXX? CLIST? RPG?

4

cf. https:!//doi.org/10.1109/SANER.2016.92

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1109/SANER.2016.92

Portfolio/Codebase History
5

IEF (1990-1996) Composer (1996-1997) COOL:GEN (1997-2004)
Advantage Gen (2004-2012) CA Gen (2012-2015) Other

https://www.utwente.nl/
http://grammarware.net

Evolution/Mining Perspective
6

https://www.utwente.nl/
http://grammarware.net

That’s What We Did!

• parse the source code

• obtain trees

• count modernity per node

• based on children

• weighted sum per node type

• normalise at every step

7

https://www.utwente.nl/
http://grammarware.net

Generalisable to WAG

• imagine attribute grammars

• with static attributes

• to enable per-type computations

• with weights

• to auto-count alternatives

• many other applications

• test generation, PCG in games, conversational AI, …

• to be continued!

8

https://www.utwente.nl/
http://grammarware.net

• language identification "=> modernity analysis

• weighted attribute grammars

• fingerprinting of codebases

• age "~> ench/maintenance, idioms/style, vulnerabilities

• info management / quantitative IT portfolio mgmt

9

https:"//github.com/WoutervdBrink/PHP-Modernity-Signature

https://www.utwente.nl/
http://grammarware.net
https://github.com/WoutervdBrink/PHP-Modernity-Signature

Controversial

• Everything is better with grammars!

• Fingerprinting/profiling/…

• Other patterns of language feature adoption

10

https://www.utwente.nl/
http://grammarware.net

