Speak Well or Be Still

Solving Conversational AI with Weighted Attribute Grammars

MeSS: MDE for Smart IoT Systemsily

dr. Vadim Zaytsev, 5 July 2022

Introduction

- Vadim Zaytsev aka @grammarware (§)
- research (原尾, CWI)
- teaching (
- industry (RAINCODE, raıncode LABS)
- Relevant details:
-ELIZA clone [1999]
- grammars [2004..]
-WAG [2021..]

Vision

Conversations should be grammatical

Each side grows a model of the other side

State of the Art: RiveScript

+ greetings
- Hi there!\{weight=20\}
- Hello!\{weight=25\}
- nuqneH
+ say something random
- This \{random\}message|sentence\{/random\} has a random word.

Grammars in CC Books

$$
\begin{aligned}
& \text { foo }::=b \text { 'a' } r . \\
& b::=' b{ }^{\prime}+. \\
& r::=\text { '---'. }
\end{aligned}
$$

Grammars in WAGIoT

$$
\begin{aligned}
& \text { time } \leftarrow \text { 'what time is it?'. } \\
& \text { time } \rightarrow[1] \text { 'it is' dt. } \\
& \text { time } \rightarrow[w] \text { 'no idea, ' } n .
\end{aligned}
$$

WAGIoT Example

```
            S}\leftarrow setup activity* stop
    setup }\leftarrow greet?getname
        greet \leftarrow 'hello'.
    greet \leftarrow 'goodmorning'.
    greet }->\mathrm{ 'greetings, human!' 'what is your name?'.
getname \leftarrow 'I am'n:= Id.
getname }->\quad\mathrm{ 'nice to meet you,' n..
activity }\leftarrow time|\cdots
    time \leftarrow 'what time is it?'.
    time }->\mathrm{ [1]'it is'【DateTime.Now】',' ' n w:= 5.
    time }->\mathrm{ [w]'it is'【DateTime.Now.Hour】'o'clock' 
    stop \leftarrow 'stop'|'off'.
```（1）
 (3)（5）
 (10)

\section*{WAGIoT Example}
＜N，A，T，R，P，C，S＞
\[
\begin{align*}
& S \leftarrow[1: 1] \text { setup activity }{ }^{*} \text { stop. } \\
& \text { setup } \leftarrow \quad[1: 1] \text { greet? getname. } \\
& \text { greet } \leftarrow \text { [1:2]'hello'. } \\
& \text { greet } \leftarrow \quad[1: 2]^{\prime} \text { good morning'. } \\
& \text { greet } \rightarrow \text { [1:1]'greetings, human!' 'what is your name?'. } \\
& \text { getname } \leftarrow[1: 1]^{\prime} \text { I am' } n:=\text { Id. } \\
& \text { getname } \rightarrow \quad[1: 1] \text { 'nice to meet you, ' } n \text {. } \\
& \text { activity } \leftarrow \quad[1: x] \text { time } \mid \cdots \text {. } \\
& \text { time } \leftarrow \quad[1: 1] \text { 'what time is it?'. } \\
& \text { time } \rightarrow \quad[1: 1+w] \text { 'it is'【DateTime.Now】',' } \dot{n}>w:=5 \text {. } \tag{22}\\
& \text { time } \rightarrow \quad[w: 1+w] \text { 'it is' } \llbracket \text { DateTime.Now.Hour】'o'clock' } w:=w-1 \text {. } \tag{23}\\
& \text { stop } \leftarrow \text { [1:1]'stop'|'off'. } \\
& \text { time } \leftarrow \quad[1: 1] \text { 'what time is it?'. } \\
& \text { stop } \leftarrow \text { [1:1]'stop'|'off'. }
\end{align*}
\]

\section*{WAGIoT Example}
\(<N, A, T, R, P, C, S\rangle\)
(25)
\[
\begin{align*}
& S \leftarrow[1: 1] \text { setup activity* }{ }^{\text {stop }} \text {. } \\
& \text { setup } \leftarrow \quad[1: 1] \text { greet? getname. } \tag{26}\\
& \text { greet } \leftarrow\left[c_{1}: c_{1}+c_{2}\right] \text { hello' } c_{1}:=c_{1}+1 \text {. } \tag{27}\\
& \text { greet } \leftarrow\left[c_{1}: c_{1}+c_{2}\right]^{\prime} \text { good morning ' } c_{2}:=c_{2}+1 \text {. } \tag{28}\\
& \text { greet } \rightarrow \text { [1:1]'greetings, human!' 'what is your name?'. } \\
& \text { getname } \leftarrow[1: 1] \text { 'I am' } n:=\text { Id. } \\
& \text { getname } \rightarrow \quad[1: 1] \text { 'nice to meet you, ' } n \text {. } \tag{31}\\
& \text { activity } \leftarrow[1: x] \text { time } \mid \cdots \text {. } \tag{32}\\
& \text { time } \leftarrow \text { [1:1]'what time is it?'. } \\
& \text { time } \rightarrow \quad[1: 1+w] \text { 'it is'【DateTime.Now』',' } \dot{n} \rightarrow w:=5 \text {. } \tag{34}\\
& \text { time } \rightarrow \text { [w:1+w]'it is'【DateTime.Now.Hour】'o'clock' w:= w-1. } \tag{35}\\
& \text { stop } \leftarrow \text { [1:1]'stop'|'off'. }
\end{align*}
\]

\section*{WAGIoT Example}
```

            S{\dot{n},n}
            setup {n} \leftarrow [1:1]greet? getname.
    greet {\mp@subsup{c}{1}{},\mp@subsup{c}{2}{}}}\leftarrow[\mp@code{c

```

```

    greet {} -> [1:1]'greetings, human!' 'what is your name?'.
    getname {n} \leftarrow [1:1]'I am'n:= Id.
    getname {n} -> [1:1]'nice to meet you,' n.
    activity {} \leftarrow [1:x]time|}|
    time {w,\dot{n}} \leftarrow [1:1]'what time is it?'.
    time {w,\dot{n}} -> [1:1+w]'it is'\llbracketDateTime.Now\rrbracket','\dot{n}>w:= 5.
    time {w,\dot{n}} -> [w:1+w]'it is'\llbracketDateTime.Now.Hour\rrbracket'o'clock' w:=w-1.
        stop {} \leftarrow [1:1]'stop'|'off'.
    ``` OF TWENTE.

\section*{Conclusion}
- Grammars, unite!
- analytic
- generative
- weighted
- attribute
- MDE, MT, ..., slicing?
-cf. event-based [doi]
-Questions?

Speak Well or Be Still: Solving Conversational AI wit bute Grammars
Vadim Zaytsev

Extended Abstract
systersation entities are an essential part of smart to
mous: convey come in many forms. largely Hous: conversational AL, virtual dig.tal largely synony
teractive agents, smart bonts, in ence of the Turing test bots, chatbots, etc. In the pres
tificial intellis senc test tincial intelligence, conversation purograms became an
iconic example of an AI system
ston
 were sLIZA \([19\) and eventually commonditising the the trend
pha pha \([20]\), IBM Watson \([9]\), Siri \([\) [3], Cortana [12] [10.fram Al-
Google Assistant Google Assistant [7], Alisa [22] and Bixby [15]. Alexa [2],
tion anemersa-
to a to game design. Weeded in in many areas from smant tomes
of this research directio the excellent recent overves of this research direction by Adaexclent recent overview
siades \([1]\) and focus now linguistic and focus now on the relation betwend Mous-
convent and the conversation enonent and the operational logicen the the
Looking at Looking at the prob
can be encoded as
can be encoded as an antutomaton wisthy, the conversation
ing internal states of the conversation states represent-
transitione transitions sannetated of the conversation compos represest, and-
or an edge device) and ond inputs (coming from the or an edge device) and outuputsts (beoming from the use
to a actuator). In the computation sent to the user or
are call are callerd. Mealy tye computation theory such outomatat
tic and have a fines \([11]\) if they are detemater
 are unfortunately too crippling, states. Both lh limitations
body of research on Mealy mathe substantial
direectly Wes directly What migh Mealy machines cannot be tapplied
input/ output might theoretically more input//output extension of portetically more feasible, is is an
or process rewrite shown trans or process rewrite systems \([10]\)], that can transition systems
finite/uncountable number both inenough mematable number of states con hanadile both in-
and still remery to handle complex tansitions, have and still represent a tandrict complex tasks intelliligently,
such that reachability such that reachability and other desirable properties ares
decidable. The lack
sider hybrid setups. For instaines pushed people to con-


```

