
Dr. Vadim Zaytsev aka @grammarware. Programme Director.

University of Twente. 6 March 2023.

TA Training

Facilitator: Code Review

http://grammarware.net

2
Teaching Assistants

(passive)

grade 7.0+

basics

junior

mastery

skilled

(active)

grade 9.0+

in-depth

senior

excellence

professional

Expert
(passive)

run labs

do groups

accommodate

guide

consult

(active)

manage

groupwork

dynamics

diversity

inclusive

Coach

(passive)

summative

assess

correct

sign off

use rubrics

be fair

(active)

align LOs

test review

argue

contend

admit

handle

Grader
(passive)

study

inspect

interpret

abstract
scrutinise
identify

(active)

uncertainty

write manual

avoid bias

validate

connect

find issues

Analyst

(passive)

formative

descriptive

structural

activate

review code

(active)

acknowledge

support

encourage

promote

confer

Facilitator
(passive)

propose

update

challenge

be creative

draft

(active)

solve

divergent

lateral

develop

coordinate

Shaper

(passive)

assist

motivate

help

behave

care

(active)

engage

contribute

signal

exemplify

take charge

Assistant

Roles and Competences

https://www.utwente.nl/
http://grammarware.net

Grader vs Facilitator?
3

https://www.utwente.nl/
http://grammarware.net

Feedback: Summative vs Normative
4

• evaluates

• product

• outcome

• given after the project

• focuses on the quality

• examples:

• conformance test

• acceptance test

• evaluates

• process

• methodology

• given during the project

• focuses on effectiveness

• examples:

• best practices

• code quality advice

https://www.utwente.nl/
http://grammarware.net

Why Code Review?

✓ catch bugs

✓ improve code quality

✓ share knowledge

✓ enforce standards

✓ improve estimates

✓ mentor new engineers

✓ build a better team

5

https://www.utwente.nl/
http://grammarware.net

Why Code Review?

✓ catch bugs

✓ improve code quality

✓ share knowledge

✓ enforce standards

✓ improve estimates

✓ mentor new engineers

✓ build a better team

6

https://www.utwente.nl/
http://grammarware.net

Types of Code Review

• tool assisted

• linters!

• instant

• pair programming

• live/synchronous

• over-the-shoulder

• asynchronous

• lightweight

• team review

• hour of code

• formal review

• artefact evaluation

7

https://www.utwente.nl/
http://grammarware.net

Key Elements of Code Review

• clear shared objectives

• process defined & followed

• constructive actionable feedback

• collaborative respectful environment

• attention to detail

8

https://www.utwente.nl/
http://grammarware.net

class HtmlWriter {

 void setXhtmlMode(boolean as_xhtml);

 void write(File f, String txt);

}

class HtmlWriter {

 static void write(File f, String txt, boolean as_xhtml);

}

class HtmlWriter {

 HtmlWriter(File f, String txt, boolean as_xhtml);

 void write();

}

9

https://www.utwente.nl/
http://grammarware.net

Java

✓ naming.Conventions.namingConventions()

✓ collapse variables, move constants to static/enum

✓ "// clean up dead/debugging code

✓ prefer streams and lambdas to for/if

✓ choose data structures & build mutable strings

✓ switch/case "">>> if/else/if/else/…

✓ throws Exception

✓ equals & hashCode

✓ does it have to be public?

✓ interface: do or do not

✓ beware of pointer leaks

✓ JSL/JUnit/Commons/Maven/Log5j/Slf4j/Jackson/Guava/JAXB

10

https://www.utwente.nl/
http://grammarware.net

Python

✓ pythonicity!

✓ spacing in both dimensions

✓ naming conventions: x, _x, "__x"__(), FooBar, FOO_BAR, …

✓ x = x + 1 # increment x

✓ for l in I[O:]:

✓ group only from in import

✓ strings and f-strings

✓ trailing commas

✓ comprehensions, zip(), all(), any() "">>> for loops

✓ if … is not "">>> if not … is

✓ "__eq"__: all six of none at all

✓ type hints

11

https:"//peps.python.org/pep-0008/

https://www.utwente.nl/
http://grammarware.net
https://peps.python.org/pep-0008/

Haskell

✓ redundant brackets, $s, \s

✓ η-reduction and `infix`

✓ otherwise = False

✓ f "">>= return

✓ use long camelCase names

✓ do not mix IO with computations

✓ group import

✓ map, foldr, foldl, … "">>> recursion

✓ min, minimum, minimumBy

✓ more functions "">>> one big function

✓ pattern matching "">>> guards

✓ data T = … deriving (Eq, Ord, Enum) "">>> type T = Int

12

https://www.utwente.nl/
http://grammarware.net

General Advice

• pay attention to details "// do not nitpick

• take your time — code takes effort

• review commit messages

• point out non-atomic commits/PRs

• use/advise tools

• check readability & documentation

• check security & leaks

• check concurrency & peformance

• check for side effects on existing code

13

https://www.utwente.nl/
http://grammarware.net

public static int dayOfYear(int month, int dayOfMonth, int year) {

 if (month "== 2) {

 dayOfMonth += 31;

 } else if (month "== 3) {

 dayOfMonth += 59;

 } else if (month "== 4) {

 dayOfMonth += 90;

 } else if (month "== 5) {

 dayOfMonth += 31 + 28 + 31 + 30;

 } else if (month "== 6) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31;

 } else if (month "== 7) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30;

 } else if (month "== 8) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31;

 } else if (month "== 9) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31;

 } else if (month "== 10) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30;

 } else if (month "== 11) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31;

 } else if (month "== 12) {

 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 31;

 }

 return dayOfMonth;

}

14

https:"//web.mit.edu/6.005/www/fa15/classes/04-code-review/

Homework

https://www.utwente.nl/
http://grammarware.net
https://web.mit.edu/6.005/www/fa15/classes/04-code-review/

Takeaways
15

• Code review improves the code

• Good code review improves the coder

• The devil is always in the details

• Everything happens for a reason

• Much research is needed/done

• https:"//doi.org/10.1109/ICSE.2015.131:

• 50% maintainability, 15% functionality

• https:"//doi.org/10.1145/3524842.3527997:

• missed bugs: semantic (53%), build (16%), analysis checks
(9%), compatibility (7%), concurrency (4%), config (4%)

• https:"//atomsofconfusion.com

https://www.utwente.nl/
http://grammarware.net
https://doi.org/10.1109/ICSE.2015.131
https://doi.org/10.1145/3524842.3527997
https://atomsofconfusion.com

Bonus: ChatGPT + SlidesAI Version
16

Click to add title
Click to add subtitle

This presentation covers the benefits of code review, a crucial practice in software development
that involves a team of developers examining each other's code. It covers the benefits of code
review for developers, students, and instructors, as well as best practices and automated tools

that can be used.

The Benefits of Code Review

Photo by Pixabay

What is Code Review?
- A practice in software development that involves
a team of developers reviewing and examining
each other's code.

- Helps to identify and correct errors, bugs, and
security issues early in the development process.

Photo by Pixabay

Benefits for Developers
- Learn from each other and share knowledge.

- Improve coding skills and promote collaboration.

- Especially important in agile development
environments.

Photo by Pixabay

Benefits for Students
- Learn about coding standards and best
practices.

- Develop critical thinking and problem-solving
skills.

- Develop important soft skills, such as
communication and teamwork.

Photo by Pixabay

Benefits for Instructors
- Provide guidelines and best practices for code
review.

- Encourage students to use automated code
review tools.

Photo by Pixabay

Conclusion
- Code review is a valuable practice that plays an
important role in software development.

- Incorporating it into their curriculum can help
instructors prepare students for the workforce.

Thank you. Please feel free to ask any questions. 😄

https://www.utwente.nl/
http://grammarware.net

