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Grader vs Facilitator?
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Feedback: Summative vs Normative
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• evaluates

• product 

• outcome 


• given after the project

• focuses on the quality

• examples:

• conformance test

• acceptance test

• evaluates

• process 

• methodology 


• given during the project

• focuses on effectiveness

• examples:

• best practices

• code quality advice
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Why Code Review?

✓ catch bugs

✓ improve code quality

✓ share knowledge

✓ enforce standards

✓ improve estimates

✓ mentor new engineers

✓ build a better team

5

https://www.utwente.nl/
http://grammarware.net


Why Code Review?

✓ catch bugs

✓ improve code quality

✓ share knowledge

✓ enforce standards

✓ improve estimates

✓ mentor new engineers

✓ build a better team

6

https://www.utwente.nl/
http://grammarware.net


Types of Code Review

• tool assisted


• linters!


• instant 


• pair programming


• live/synchronous 


• over-the-shoulder


• asynchronous 


• lightweight


• team review


• hour of code


• formal review


• artefact evaluation
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Key Elements of Code Review

• clear shared objectives


• process defined & followed


• constructive actionable feedback


• collaborative respectful environment


• attention to detail
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class HtmlWriter {

    void setXhtmlMode(boolean as_xhtml);

    void write(File f, String txt);

}


class HtmlWriter {

    static void write(File f, String txt, boolean as_xhtml);

}


class HtmlWriter {

    HtmlWriter(File f, String txt, boolean as_xhtml);

    void write();

}
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Java

✓ naming.Conventions.namingConventions()

✓ collapse variables, move constants to static/enum

✓ "// clean up dead/debugging code 

✓ prefer streams and lambdas to for/if

✓ choose data structures & build mutable strings

✓ switch/case "">>> if/else/if/else/…

✓ throws Exception

✓ equals & hashCode

✓ does it have to be public?

✓ interface: do or do not

✓ beware of pointer leaks

✓ JSL/JUnit/Commons/Maven/Log5j/Slf4j/Jackson/Guava/JAXB
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Python

✓ pythonicity!

✓ spacing in both dimensions

✓ naming conventions: x, _x, "__x"__(), FooBar, FOO_BAR, …

✓ x = x + 1 # increment x

✓ for l in I[O:]:

✓ group only from in import

✓ strings and f-strings

✓ trailing commas

✓ comprehensions, zip(), all(), any() "">>> for loops

✓ if … is not "">>> if not … is

✓ "__eq"__: all six of none at all

✓ type hints
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Haskell

✓ redundant brackets, $s, \s

✓ η-reduction and `infix`

✓ otherwise = False

✓ f "">>= return

✓ use long camelCase names

✓ do not mix IO with computations

✓ group import

✓ map, foldr, foldl, … "">>> recursion

✓ min, minimum, minimumBy

✓ more functions "">>> one big function

✓ pattern matching "">>> guards

✓ data T = … deriving (Eq, Ord, Enum) "">>> type T = Int
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General Advice

• pay attention to details "// do not nitpick

• take your time — code takes effort

• review commit messages

• point out non-atomic commits/PRs

• use/advise tools

• check readability & documentation

• check security & leaks

• check concurrency & peformance

• check for side effects on existing code
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public static int dayOfYear(int month, int dayOfMonth, int year) {

    if (month "== 2) {

        dayOfMonth += 31;

    } else if (month "== 3) {

        dayOfMonth += 59;

    } else if (month "== 4) {

        dayOfMonth += 90;

    } else if (month "== 5) {

        dayOfMonth += 31 + 28 + 31 + 30;

    } else if (month "== 6) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31;

    } else if (month "== 7) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30;

    } else if (month "== 8) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31;

    } else if (month "== 9) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31;

    } else if (month "== 10) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30;

    } else if (month "== 11) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31;

    } else if (month "== 12) {

        dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 31;

    }

    return dayOfMonth;

}
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Takeaways
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• Code review improves the code

• Good code review improves the coder

• The devil is always in the details

• Everything happens for a reason

• Much research is needed/done


• https:"//doi.org/10.1109/ICSE.2015.131:

• 50% maintainability, 15% functionality


• https:"//doi.org/10.1145/3524842.3527997:

• missed bugs: semantic (53%), build (16%), analysis checks 
(9%), compatibility (7%), concurrency (4%), config (4%)


• https:"//atomsofconfusion.com 
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Bonus: ChatGPT + SlidesAI Version
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This presentation covers the benefits of code review, a crucial practice in software development 
that involves a team of developers examining each other's code. It covers the benefits of code 
review for developers, students, and instructors, as well as best practices and automated tools 

that can be used.

The Benefits of Code Review
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What is Code Review?
-  A practice in software development that involves 
a team of developers reviewing and examining 
each other's code.

-  Helps to identify and correct errors, bugs, and 
security issues early in the development process.
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Benefits for Developers
-  Learn from each other and share knowledge.

-  Improve coding skills and promote collaboration.

-  Especially important in agile development 
environments.
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Benefits for Students
-  Learn about coding standards and best 
practices.

-  Develop critical thinking and problem-solving 
skills.

-  Develop important soft skills, such as 
communication and teamwork.
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Benefits for Instructors
-  Provide guidelines and best practices for code 
review.

-  Encourage students to use automated code 
review tools.
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Conclusion
-  Code review is a valuable practice that plays an 
important role in software development.

-  Incorporating it into their curriculum can help 
instructors prepare students for the workforce.

Thank you. Please feel free to ask any questions. 😄
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