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Abstract—We describe a completed effort to recover the
relationships between all the grammars that occur in the
different versions of the Java Language Specification (JLS).
The relationships are represented as grammar transformations
that capture all accidental or intended differences between the
JLS grammars. This process is mechanized and it is driven by
simple measures of nominal or structural differences between
any pair of grammars involved. Our work suggests a form
of consistency management for the JLS in particular, and
language specifications in general.

I. INTRODUCTION

Many software languages (and programming languages in
particular) are described simultaneously by multiple gram-
mars that reside in different software artifacts. For instance,
one grammar may reside in a language specification; another
grammar may be encoded in a parser specification. Many
software languages are also subject to evolution, which
means that artifacts with embedded grammars may also
occur in different versions. This diversity of grammars
for any single software language represents a fundamental
consistency challenge.

Grammars (and hence grammar-dependent artifacts) may
actually disagree on the software language in question in
a hard-to-spot manner. Also, the intended, evolution-related
differences between two grammars may be obfuscated by
other more accidental or superficial differences between
the grammars. While such disagreement and obfuscation
are certainly not desirable, best practices of grammarware
engineering cannot rule them out. This is where the present
paper makes a contribution.

In earlier work, we have begun to address the fun-
damental problem of grammar diversity by initiating a
method for grammar convergence [1]; this method combines
grammar extraction (to obtain raw grammars from artifacts
and represent them uniformly), grammar comparison (to
determine nominal and structural differences between given
grammars), and grammar transformation (to represent the
relationships between given grammars by transformations
that make the grammars structurally equal).

In the present paper, we report on a completed, major case
study for grammar convergence, and we refine the method
to provide better scalability and reproducibility.

The case concerns the 3 different versions of the Java Lan-
guage Specification (JLS; [2], [3], [4]) where each of the 3
versions contains 2 grammars — one grammar is optimized
for readability (c.f., read1–read3 in Fig. 1), and another
one is intended to serve as a basis for implementation (c.f.,
impl1–impl3 in Fig. 1).

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

Figure 1. Binary convergence tree for the JLS grammars. (The nodes
in the figure are grammars where the leaves correspond to the original
JLS grammars and the other nodes are derived. The directed edges denote
grammar transformation chains. We use a (cascaded) binary tree here, i.e.,
each non-leaf node is derived from two grammars.)

Here we note that the JLS is critical to the Java plat-
form — it is a foundation for compilers, code generators,
pretty-printers, IDEs, code analysis and transformation tools
and other grammarware for the Java language. The JLS is
the authoritative specification of Java. One may assume that
Sun Microsystems (i.e., the owner of the specification) is
interested in an unambiguous, consistent and understandable
set of JLS documents.

One would expect that the different grammars per version
are essentially equivalent in terms of the generated language.
(As a concession to practicality, i.e., implementability in
particular, one grammar may be more permissive than the
other.) One would also expect that the grammars for the
different versions engage in an inclusion ordering (again, in
terms of the generated languages) because of the backwards-
compatible evolution of the Java language.



Those expected relationships of (liberal) equivalence and
inclusion ordering are significantly violated by the JLS
grammars, as our case study shows.

It is instructive to wonder why the importance of JLS
combined with the assumed scrutiny that went into its
preparation still let inconsistencies go unnoticed. We can
think of two reasons. First, we note that language equiva-
lence and inclusion is not amenable to any straightforward
check; in fact, it is undecidable for context-free grammars.
Second, grammar design and evolution is a manual process
in practice: grammar engineers design and evolve gram-
mars, as they see fit. They may use simple tools to check
the grammar for basic well-formedness or grammar-class
compliance. They may also test a parser derived from the
grammar. However, such measures cannot guarantee the
expected properties for (relaxed) language equivalence and
inclusion; oversights happen all too easily (as our case
study shows). Our (refined) method of grammar convergence
addresses both challenges.

The motivation of our work and its significance is not
limited to the mere discovery of bugs in the Java standard
or in any other set of grammars for that matter. (In fact,
some JLS bugs have been discovered, time and again, by
means of informal grammar inspection or other brute-force
methods.1)

The significance of our work is amplified by two argu-
ments. First, we provide a simple and mechanized process
that is guaranteed to reveal accidental or intended differences
between grammars. Second, we are able to represent the dif-
ferences in a precise, operational and accessible manner —
by means of grammar transformations. In different terms, we
are practically able to prove (or disprove) the equivalence of
two given grammars. Our method allows for grammar diver-
sity without the drawbacks of disagreement and obfuscation.
Different grammars can be effectively related to each other.

Contributions

1) We have recovered nontrivial relationships between
grammars of industrial size. (That is, we show that
the grammars are equivalent modulo well-defined
transformations.) If grammar convergence is compared
to related work on recovering, customizing, correct-
ing, completing, restructuring, deriving, and inferring
grammars, then it can be said to be original in that two
or more grammars are given and need to be related to
each other — as opposed to any process that starts
from a single grammar.

1There are various accounts that have identified or fixed bugs in the
JLS grammars or, in fact, in grammars that were derived from the JLS in
some manner. We refer to the work of Richard Bosworth as a particularly
operational account; it is a clear list of bugs which is also endorsed
by Sun Microsystems: http://www.cmis.brighton.ac.uk/staff/rnb/bosware/
javaSyntax/syntaxV2.html. We refer to this list as “known bugs” in our
process.

2) We have implemented a mechanized and measurable
and reproducible process for grammar convergence.
Compared to our initial work [1], the process consists
of well-defined phases and progress can be effectively
tracked in terms of nominal and structural differences
between the grammars at hand.

3) We have worked out a comprehensive operator suite
for grammar transformation that substantially extends
our previous work on the subject.

4) The JLS case study is publicly available.2

Road-map

• §II sketches the corpus of JLS grammars.
• §III describes an approach to grammar transformation.
• §IV describes a (refined) convergence process.
• §V provides a post-mortem for the JLS case.
• §VI discusses related work.
• §VII concludes the paper.

II. BACKGROUND: THE JLS CORPUS

We recall that each version of the JLS provides a grammar
that is optimized for readability (c.f., read1–read3 in Fig. 1),
and another one that is intended to serve as a basis for
implementation (c.f., impl1–impl3 in Fig. 1). We also refer
to these grammars as being “more readable” or “more
implementable”. These notions are not strongly defined,
but one can think, for example, of left factoring (to help
with look ahead) as being used in the more implementable
grammars but not in the more readable grammars.

A. Grammar extraction

A JLS document is basically a structured text document
with embedded grammar sections. In fact, the more readable
grammar is developed throughout the document where the
more implementable grammar is given, en bloc, in a late
section — a de-facto appendix.

The JLS is available electronically in HTML and PDF
format. Neither of these formats was designed with con-
venient access to the grammars in mind. We have opted
for the HTML format here.3 The grammar format slightly
varies across the different JLS grammars and versions; we
had to collect formatting rules from different documents and
sections — in particular from [2, §2.4], [3, §2.4, §18] and
[4, §2.4, §18].

2The complete JLS effort (including all the involved sources, transfor-
mations, results, and tools) is publicly available through http://slps.sf.net/;
see topics/java/lci in particular.

3In this paper, we show grammar fragments in a pretty-printed format
(as opposed to the markup-based source format): nonterminals are in italic
type, terminals are enclosed in double quotes, and operators “?”, “*”
and “+” serve for optionality and lists; top-level choices (alternatives) are
represented as a set of productions with the same left-hand side; elisions
are shown as “...”.



Grammar class Iteration style
impl1 LALR(1) left-recursive
read1 none left-recursive
impl2 unclear EBNF
read2 none left-recursive
impl3 “nearly” LL(k) EBNF
read3 none left-recursive

Table I
Basic properties of the JLS grammars.

In order to deal with irregularities of the input format,
we needed to design and implement a non-classic parser
to extract and analyze the grammar segments of the doc-
uments and to perform some forms of recovery. There
are these categories of irregularities: liberal use of markup
tags, misleading indentation, duplicate definitions as well as
numerous smaller issues. (About 700 fixes were performed.)
The extraction parser is beyond the scope of this paper.

B. Grammar classes and correspondences

JLS1: It is stated [2, §19] that the more implementable
grammar has “been mechanically checked to insure that it
is LALR(1)”. The correspondence between read1 and impl1
is briefly described by saying [2, §2.3] that read1 is “very
similar to” impl1 “but more readable”.

JLS2: The second edition of the JLS [3, “Preface to the
Second Edition”] “integrates all the changes made to the
Java programming language since [...] the first edition in
1996. The bulk of these changes [...] revolve around the
addition of nested type declarations.” The JLS1/2 grammars
themselves are nowhere related explicitly. Upon cursory
examination we came to conclude that read1 and read2 are
strikingly similar (modulo the extensions to be expected),
whereas surprisingly, impl1 and impl2 appeared as different
developments. Also, the LALR(1) claim for impl1 is not
matched by impl2 for which it is only said [3, §18] to be
“the basis for the reference implementation”.

JLS3: JLS3 extends JLS2 in numerous ways [4, Preface]:
“Generics, annotations, asserts, autoboxing and unboxing,
enum types, foreach loops, variable arity methods and static
imports have all been added to the language”. Again, the
JLS2/3 grammars themselves are nowhere related explicitly,
and again, cursory examination suggests that read2 and
read3 are strikingly similar (modulo the extensions to be
expected). This time, impl2 and impl3 also bear strong
resemblance. No definitive grammar-class claim is made, but
an approximation thereof: impl3 is said [4, §18] to be “not an
LL(1) grammar, though [...] it minimizes the necessary look
ahead.” Hence, impl3 has definitely departed from LALR(1)
(the grammar class of impl1).

Productions Nonterminals Tops Bottoms
impl1 282 135 1 7
read1 315 148 1 9
impl2 185 80 6 11
read2 346 151 1 11
impl3 245 114 2 12
read3 435 197 3 14

Table II
Basic metrics of the JLS grammars.

In addition to grammar class claims for the JLS grammars
we have also recorded iteration styles during cursory exam-
ination; see Table I. This data already clarifies that we need
to bridge the gap between different iteration styles (which is
relatively simple) but also different grammar classes (which
is more involved) — if we want to recover the relationships
between the different grammars by effective transformations.

C. Simple grammar metrics

Table II displays some simple grammar metrics for the
various JLS grammars.4 We have eventually understood that
the major differences between the numbers of productions
and nonterminals for the two grammars of any given version
is mainly implied by the different grammar classes and
iteration styles. The decrease of numbers for the step from
impl1 to impl2 is explainable with the fact that an LALR(1)
grammar was replaced by a new development (which does
not aim at LALR(1)). Otherwise, the obvious trend is that
the numbers of productions and nonterminals go up with the
version number.

The difference in numbers of top-nonterminals is a prob-
lem indicator. There should be only one top-nonterminal:
the actual start symbol of the Java grammar. The difference
in numbers of bottom-nonterminals could be reasonable be-
cause a bottom nonterminal may be a lexeme class — those
classes are somewhat of a grammar-design issue. However, a
review of the nonterminal symbols rapidly reveals that some
of them correspond to (undefined) categories of compound
syntactic structures.

D. Convergence outline

Let us consider again the convergence tree of Fig. 1. The
plan must be to devise transformations such that the two
grammars per JLS version are “converged to a common
denominator” (see the nodes jls1–3 in the figure), and
all three versions are “converged” (in pairwise fashion) to
account for inter-version differences — the extensions to the

4A top nonterminal is a nonterminal that is defined but never used; a
bottom nonterminal is a nonterminal that is used but never defined; see [5],
[6] for these terms.



Java language in particular (see the nodes jls12 and jls123
as well as read12 and read123 in the figure).

When deriving jls1–3, we give preference to the more
implementable grammar as the target of convergence (while
some refactoring and correction may still be applied
to it). This preference reflects the general rule that an
implementation-oriented artifact should be derived from a
design-oriented artifact — rather than the other way around.
(Incidentally, this direction is also easier to handle by the
available transformation operators.)

When relating the different JLS versions, we adopt the
redundant approach to relate the common denominators jls1–
3 in one cascade (see the nodes jls12 and jls123), but
also the readable grammars read1–3 in another cascade
(see the nodes read12 and read123). The latter cascade is
presumably more important because read1–3 are known to
be structurally similar; hence convergence can be expected
to be cheap. The additional cascade can also be seen as a
sanity and scalability check for the method.

III. GRAMMAR TRANSFORMATION

In this section, we illustrate intended and accidental
differences between the JLS grammars and we represent
those differences as operational grammar transformations.
Simultaneously, we provide an overview of the major op-
erators that are needed for the transformation of concrete
syntax definitions in the context of grammar convergence.
The operators are independent of the language of study — be
it Java or Cobol.

We distinguish semantics-preserving vs. semantics-
increasing vs. semantics-decreasing vs. semantics-editing
operators [1]. The term semantics refers here to the language
generated by the grammar — when considered as a set of
strings.

A. Semantics-preserving operators

There are operators to fold and unfold nonterminal defi-
nitions, to extract and inline specific nonterminals, to factor
and distribute grammar expressions, to “massage” grammar
expressions (i.e., to rewrite them according to algebraic
laws), and to alter iteration style (recursion vs. “*”). We
also say that all these operators serve grammar refactoring.

Several transformation operators serve disciplined “re-
placement”, i.e., they are invoked by the form o(x, x′) where
o is the operator in question, x is the grammar expression
to be located in the input, and x′ is the corresponding
replacement. For instance, the factor operator is applied to
an expression and a factored variation; the massage operator
is applied to an expression and an algebraically equivalent
variation based on a fixed set of laws.

Example 3.1 (factor and massage transformations):
factor(

(Block | ("static" Block)) ,
((ε | "static") Block) );

massage(
(ε | "static") ,
"static"? );

In read2, there are distinct alternatives for blocks vs. static
blocks. In contrast, in impl2, these forms appear in a factored
manner. Hence, the factor operator is used to factor out the shared
reference to block. Then, the massage operator changes the style
of expressing optionality of the keyword “static”.

Other grammar transformation operators apply a fixed
operation to a specific nonterminal, and hence, they can
be invoked by the form o(n) where o is the operator in
question, and n is the nonterminal to be affected. For
instance, inlining a nonterminal can be requested in this
manner. Also, the conversion from a recursive definition-
based style of iteration to the use of the regular operators
“*” and “+” can be requested in this manner. (We call the
latter step “de-yaccification” [7], [8].)

Like the previous transformation sample, the next one
is taken from a refactoring script that aligns read2 and
impl2. The JLS case involves many hundreds of such small
refactoring steps; see §V.

Example 3.2 (deyaccify and inline transformations):
deyaccify(ClassBodyDeclarations);
inline(ClassBodyDeclarations);
massage(

ClassBodyDeclaration+? ,
ClassBodyDeclaration? );

In read2, recursion-based style of iteration is used. For instance,
there is a recursively defined nonterminal ClassBodyDeclarations
for lists of ClassBodyDeclaration. In contrast, in impl2, the
list form “*” is used. Deyaccification replaces the recursive
definition of ClassBodyDeclarations by ClassBodyDeclaration+.
The nonterminal ClassBodyDeclarations is no longer needed, and
hence inlined. The list of declarations was optional, and hence
“+” and “?” can be simplified to “*”.

B. Semantics-in/decreasing operators

There are operators to widen and narrow occurrence
constraints (e.g., to change “+” to “*” and vice versa), to add
and remove alternatives (say, productions), and to replace a
nonterminal occurrence by one of its productions and vice
versa (to which we refer as downgrading and upgrading).
One can also make optional symbols (i.e., those with “?” or
“*”) to appear or disappear.



Example 3.3 (Widening an occurrence constraint):
widen(
"static",
"static"?,
in ClassBodyDeclaration);

This transformation is part of a script that captures the delta
between JLS1 and JLS2. The particular widening step enables
instance initializers in class bodies (where only static initializers
were admitted before).

The example also demonstrates that transformation oper-
ators may carry an extra argument to describe the scope of
replacement. By default, the scope is universal: all match-
ing expressions in the input grammar would be affected.
Selective scopes are nonterminal definitions (specified by a
nonterminal — as in the example) or productions (specified
by a production label).

Example 3.4 (Adding an alternative):
add(ConstantModifier: Annotation);

This transformation is part of a script that captures the delta
between JLS2 and JLS3. In JLS2, a constant modifier can
be "public" or "static" or "final". JLS3 offers the
additional option Annotation.

When we seek relationships between grammars of differ-
ent versions, then semantics-increasing/-decreasing transfor-
mations are clearly to be expected. As a matter of discipline,
we prefer to describe the delta by a semantic-increasing
transformation to map a version to its successor version (as
opposed to the inverse direction). We speak of grammar
extension in this case.

However, increase (or decrease) may also be needed when
two grammars are essentially equivalent — except that one
is more permissive than the other. This actually happens
in practice: a permissive grammar may be needed as a
concession to practicality of say parser implementation. We
also speak of grammar relaxation in this case. In the JLS
case, the different purposes of the grammars (to be more
or less readable or implementable resp.) imply the need for
relaxation. Similar issues arise with relationships between
abstract and concrete syntaxes [1].

Finally, two grammars may differ (with regard to the
generated language) in a manner that is purely accidental
(read as “incorrect”). We speak of (transformations for)
grammar correction in this case. Some corrections may be
expressed in terms of semantics-increasing/-decreasing oper-
ators. (Otherwise we have to use less disciplined operators;
see below.)

Example 3.5 (Grammar relaxation):

impl2
Modifier: "public" | ...

read2
ClassModifier : "public" | ...
FieldModifier : "public" | ...
InterfaceModifier : "public" | ...
MethodModifier: "public" | ...

In impl2, there is only one category of (arbitrary) modifiers.
In contrast, in read2, there are various precise categories of
modifiers for classes, fields, interfaces and methods. Accordingly,
the impl2 grammar is more permissive as far as modifiers are
concerned. We omit the neutralizing transformation.

We suggest that a language specification should explicitly
call out relaxations so that they are not confused with
overlooked inconsistencies (to be modelled as corrections)
or evolutionary differences (to be modelled as extensions).

C. Semantics-revising operators

There are operators to undefine a nonterminal (i.e., to
abandon its definition), to replace a grammar expression in
an unconstrained manner, to inject new components into a
production and to project away existing components. The
operators inject and project can be invoked by a form such
that a grammar expression with markers (as in a <b> c) is
passed as a parameter. These markers highlight the compo-
nents to be added or removed resp., and thereby state the
intention of the operator application more explicitly.

Example 3.6 (Correcting statement syntax in impl2):
inject(Statement: "break" Identifier? < ";" > );

The production for the break statement lacks the semicolon which
is injected accordingly (left unnoticed in Bosworth’s bug list, but
obvious when converging with read2).

Example 3.7 (Correcting expression syntax):
Incorrect expression syntax in impl2 and impl3

Expression2: Expression3 [ Expression2Rest ]
Expression2Rest: (InfixOp Expression3)?
Expression2Rest: Expression3 "instanceof" Type

Language-revising transformation
project(

Expression2Rest:
< Expression3 > "instanceof" Type);

Corrected expression syntax
Expression2: Expression3 [ Expression2Rest ]
Expression2Rest: (InfixOp Expression3)?
Expression2Rest: "instanceof" Type

The impl2 and impl3 grammars define the Java expression syntax
by means of layers, i.e., there are several nonterminals Expres-
sion1, Expression2, ... for the different priorities. We are con-
cerned with one layer here. The second rule for Expression2Rest
contains an offending occurrence of Expression3 which needs to
be projected away. This issue was revealed by comparing the
impl2 and impl3 grammars with the read2 and read3 grammars
(after some prior refactoring).



These two examples pinpoint “grammar bugs”: incorrect
syntax. In some cases, incorrect syntax merely arises from
representation anomalies of the HTML input used for ex-
traction — as illustrated below.

Example 3.8 (Extraction — post-processing for impl3):
replace(

BlockStatements? ,
"{" BlockStatements "}" );

The source format defines curly brackets to express iteration.
However, in the example at hand, they were meant as terminals,
and were not recognized due to missing markup. The incorrect
list construct is replaced accordingly.

Example 3.9 (Initial correction for impl2):
replace(

Expr,
Expression);

A misnamed nonterminal is found when examining the list of
bottom nonterminals before the convergence process starts.

IV. CONVERGENCE PROCESS

Overall, grammar convergence is an iterative process that
alternates two activities [1]: grammar comparison (to deter-
mine differences) and grammar transformation (to resolve
differences and thereby move closer towards convergence,
i.e., structural equivalence of grammars). There are two
elements of choice involved: which difference to pick for
treatment at a given point, and what transformations to apply
for the resolution of the difference. We refine this process
in a substantial manner below, but these elements of choice
will remain.

In the sequel, we limit ourselves to convergence for pairs
of grammars (which is sufficient for the cascaded tree of the
JLS case).

A. Grammar differences

We perform (tool-supported) grammar comparison to re-
trieve nominal or structural grammar differences. We face
a nominal difference when a nonterminal is defined or
referenced in one of the grammars but not in the other. We
face a structural difference when the definitions of a shared
nonterminal differ. For every nonterminal, we actually count
the maximum number of unmatched alternatives (of either
grammar) as the number of structural differences.

B. Phases of convergence

Grammar convergence is organized in a sequence of
phases as follows.

Preparation: This phase involves correcting immediately
obvious or a-priori known errors in both grammars. In the
JLS case, we incorporated an available bug list at this

Figure 2. Difference reduction for read2 towards the convergence target
jls2 in the convergence tree of Fig. 1.

stage. We also resolved some inaccuracies that were caused
by representation anomalies in the HTML input. Further,
we added missing definitions. No grammar comparison is
involved in this phase.

Nominal matching: This phase aligns the syntactic cat-
egories of the grammars in terms of their nonterminals.
The nominal differences serve as a guidance here to draft
renaming as well as extract/inline transformations such that
they immediately reduce the number of nominal differences.

This phase relies on two soft assumptions. First, when
a nonterminal occurs in both grammars, then it models the
same syntactic category (conceptually). Second, the gram-
mar engineer correctly matches different nonterminals from
the two grammars. Otherwise, severe structural differences
would be encountered eventually as a symptom of error.

Structural matching: This phase aligns the definitions of
the nonterminals in a structural sense; this phase dominates
the transformation effort. The structural differences serve
as a guidance here to draft refactorings such that they
immediately reduce the number of differences. The basic
idea is that each refactoring operator serves a certain pattern
of structural differences, and hence the grammar engineer
can systematically exhaust these patterns.

Resolution: This phase consists of three kinds of steps,
as discussed in §III: extension, relaxation and correction.
In the case of semantics-increasing operators, it is up
to the grammar engineer to perform the classification.
(Semantics-revising transformations serve correction by def-
inition. Semantics-decreasing transformations must serve
correction too because of the directed process that we use
in capturing version or permissiveness differences.) Again,
each of the possible operators serves a certain pattern of
structural differences.

C. Difference reduction

Hence the guiding principle for grammar convergence is
to consistently reduce the number of grammar differences



jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5116 2847 6772 10715 1639 3082 30853
Number of transformations 67 298 111 395 544 77 135 1627

◦ Semantics-preserving 45 239 80 283 381 31 78 1137
◦ Semantics-increasing or -decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Preparation phase 1 — — 15 24 11 14 65
◦ Known bugs (Ex. 3.7) — — — 1 11 — 4 16
◦ Post-extraction (Ex. 3.8) — — — 7 8 7 5 27
◦ Initial correction (Ex. 3.9) 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (Ex. 3.4) — 17 26 — — 31 38 112
◦ Relaxation (Ex. 3.5) 18 39 5 75 112 — 2 251
◦ Correction (Ex. 3.6) 3 3 — 22 27 4 3 62

Figure 3. Transformation of the JLS grammars — effort metrics and categorization

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 178 75 1 7
jls3 236 109 1 7
jls12 178 75 1 7
jls123 236 109 1 7
read12 345 152 1 7
read123 438 201 1 7

Table III
Simple metrics for the derived JLS grammars.

throughout the two matching phases as well as the final
resolution phase. Fig. 2 illustrates this principle for one
specific JLS grammar and the related convergence. The
figure also visualizes that nominal differences tend to be
resolved earlier than structural differences.

Our transformation infrastructure is actually aware of the
different phases of convergence, and it checks (run-time) the
incremental reduction of differences. To this end, we rely
on an asymmetric use of convergence with pairs of input
grammars where always one grammar serves as a baseline
for the other.5

V. POST-MORTEM OF THE JLS CASE

Table III shows the same, simple metrics for the de-
rived grammars as we originally presented for the leaves
of the convergence tree; c.f., Table II. Top- and bottom-
nonterminals are consolidated now. In the case of the “com-
mon denominators” jls1–3, the numbers of nonterminals and
productions reflect that these grammars were derived to be
similar to impl1–3. Similar correlations hold for the “inter-
version” grammars in the rest of the table.

5As a concession to a simple design of the operator suite for grammar
transformations, we are also allowed to use restructuring steps that slightly
increase structural differences as long as we explicitly group them such that
the complete “transaction” still achieves reduction.

Fig. 3 measures the extraction effort and the involved
grammar transformations. This information was obtained in
an automated manner but it relies on some amount of seman-
tic annotation of the transformations for the classifications
and phases.

The number of transformations directly refers to the num-
ber of applications of transformation operators. 33 different
operators are used in the JLS case; most of them were intro-
duced in §III. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedi-
cated to semantics-increasing or -decreasing transformations
with only 2% of semantics-revising transformations.

In Fig. 3, one can observe that relaxation transformations
indeed occur when a more readable and a more imple-
mentable grammar are converged. Further, one can observe
that the overall transformation effort is particularly high for
jls12 — which signifies the fact (already mentioned above)
that impl1 and impl2 appear to be different developments.
Finally, we have made an effort to incorporate Sun’s bug list
into the picture (see “Known bugs”). We note that some of
the known bugs equally occur in both the more readable and
the more implementable grammar, in which case we cannot
even discover them by grammar convergence.

VI. RELATED WORK

Broadly speaking, grammar convergence and the present
case study contribute to grammar(ware) engineering. Within
this context, our work is related to agile parsing [9] and
grammar recovery or re-engineering of syntax definitions
[5], [6], [7], [10], [11], model-driven parser development
[12] as well as grammar inference [13], [14], [15], [16],
[17]. However, such related work does not involve two
central elements of grammar convergence: comparison and
simultaneous transformation of two or more grammars. All
grammar inference and recovery methods essentially involve
code samples, which currently play no role in grammar
convergence. It is conceivable to combine methods, e.g.,



the use of grammar inference techniques to inform a semi-
automatic grammar transformation approach.

An interesting blend of recovery and convergence (or
consistency checking) is described in [18] where precedence
rules are recovered from multiple grammars and checked for
consistency.

There is also related grammar engineering work that
incorporates measures into some related process (e.g., gram-
mar metrics in the process of grammar recovery) [19], [20],
[10]. We have shown that simple measures for grammar
differences can drive the process of grammar convergence.

Grammar transformations [9], [8], [21], [22], [23] provide
the heavy lifting for grammar convergence. The sketched
operator suite (as of §III) builds on top of our previous work
on transformation operators [8], [22]. However, we have sys-
tematically extended the suite to provide more opportunities
for semantics-preserving or reasonably semantics-increasing
transformations. For instance, in §III-A, we mentioned factor
and distribute operators that specifically arise from the need
to align a less factored (i.e., more readable) grammar with
a more factored (i.e., more implementable) grammar.

Grammar comparison can be compared with schema
matching in ER/relational modeling [24], [25] as well as
model and metamodel matching/diffing in model-driven
engineering [26], [27], [28] (specifically in the context of
model/metamodel evolution). However, our current approach
to comparison (as of §IV) is more straightforward than
schema matching for two reasons. First, the metamodel of
grammars is relatively simple. Second, we only expect nom-
inal differences and structural differences based on matching
up alternatives. We will need a more advanced comparison
machinery (which could benefit from previous work indeed)
once we aim at inference of grammar transformations.

VII. CONCLUDING REMARKS

We have provided the first published record of recovering
and representing the relationships between given grammars
of industrial size that serve different audiences (language
users and implementers) and that capture different versions
of the language. Our results indicate that consistency among
the different grammars and versions even for a language as
complex as Java is achievable.

The recovery and representation of grammar relationships
is based on a systematic and mechanized process that
leverages a-priori known grammar bugs, grammar metrics
(e.g., for problem indication), grammar comparison for nom-
inal and structural differences, and most notably, grammar
transformations. We carefully distinguish transformations for
grammar refactoring, extension, correction and relaxation.

While the JLS situation required the recovery of gram-
mar relationships, the ultimate best practice for grammar
convergence should require continuous maintenance of rela-
tionships. That is, the relationships should be continuously

checked and updated whenever necessary along dependent
or independent evolution of the involved artifacts.

The approach, as it stands, faces a productivity problem.
The transformation part of grammar convergence requires
substantial effort by the grammar engineer to actually map
any given grammar difference into a (short) sequence of
applications of operators for grammar transformation. For
instance, the JLS transformations required several weeks of
work. Such costs may be prohibitive for widespread adoption
of grammar convergence.

Notable productivity gains can be expected from advanced
tool support. We currently rely on basic batch execution of
the transformations. Instead, the transformations could be
done interactively and incrementally with good integration
for grammar comparison, transformation and error diagnosis.

Other productivity gains are known to be achievable by
means of normalization schemes (c.f., de-/yaccification in
[7], [8]).

However, ultimately, we need to provide inference of
relationships (in fact, transformations). Such inference is
a challenging problem because the convergence process
involves elements of choice that we need to better understand
before we expect reasonable results. For instance, when
two syntactic categories are equivalent under fold/unfold
modulations, then the grammar engineer is likely to favor
one of the two forms — this calls for either an interactive
approach or appropriate notions of normal forms or rule-
based normalization.

Perhaps the most exciting, remaining problem is to pro-
vide a proper formal argument for the “minimality” of the
non-semantics-preserving transformations that are involved
in a convergence. Currently, we use the pragmatic approach
to first align nonterminals, then to align alternatives (by
structure) as much as possible, and finally to break out
of refactoring and allow ourselves presumably local non-
semantics preserving transformations. However, there is no
formal guarantee currently for not facing a false positive
(“a presumed language difference that is none”). That is,
one may accidentally engage in semantics-revising trans-
formations even though the relevant syntactic categories
are equivalent, but nonterminal symbols or alternatives are
confused by the grammar engineer. Formally, the desired
notion of minimality is limited by the undecidability of
grammar equivalence, but we are confident that a practical
strategy can be devised based on appropriate static analyses
of the transformations and the involved grammars.
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