
Reverse Engineering Grammar Relationships

Ralf Lämmel and Vadim Zaytsev

Software Languages Team
The University of Koblenz-Landau

Germany

zaytsev@uni-koblenz.de

1 Grammar consistency checking

Many software languages (and programming lan-
guages, in particular) are described simultaneously by
multiple grammars that are found in different soft-
ware artifacts. For instance, one grammar may reside
in a language specification; another grammar may be
encoded in a parser specification; yet another gram-
mar may be present in an XML schema for tool-
independent data exchange. Ideally, one would want
to reliably establish and continuously maintain that
all co-existing (potentially embedded) grammars de-
scribe the same intended language. Without such
guarantee, grammar inconsistencies may go unno-
ticed, and grammar-based software artifacts may get
brittle. Some ad hoc or brute force methods exist to
address this problem, but ultimately grammar consis-
tency checking is an open software engineering prob-
lem without a satisfying best practice.

2 Obstacles for consistency checking

For simplicity, let us assume that all the grammars
of interest for the given language are BNFs. If we
wanted to automatically establish or maintain that
some BNFs describe the same language, then we face
the problem of grammar equivalence, which, in gen-
eral, is formally undecidable. Such a formal limit is
certainly a part of the problem that there is no best
practice for grammar consistency checking.

Obviously, the problem becomes even more chal-
lenging once we consider the practical situation of
grammars of many different forms: BNFs, parser de-
scriptions, XML schemata, software models, etc. Such
variation implies impedance mismatches. As a result,
it may be hard to mentally or automatically map one
grammar to the other.

3 Grammar differences

Grammars for the same language may be different
for various, practically viable reasons. For instance,
grammars may be tailored for a certain purpose or
quality such as readability. Some grammars may
have been designed independently of one another, and

hence they are likely to be vastly different in the sense
of structural equality of the grammar specifications.
Other grammars may have been affected heavily by
compromises required by implementation technolo-
gies (e.g., parsing techniques), or data models (e.g.,
XML Schema as opposed to BNF). To summarize, in
practice, there are many complex accidental, superfi-
cial, and idiosyncratic differences between co-existing
grammars of a language.

4 Language evolution

The challenges of grammar understanding and gram-
mar consistency checking are intensified by software
evolution. Both software languages as such (e.g., in
the form of language documentation) and grammar-
based software artifacts (e.g., compilers, source code
analysis tools, IDEs) are subject to possibly indepen-
dent evolution. The grammars of different versions
are not even intended to describe the same language,
but one would still want to understand their relative
correspondence in terms of a “language delta”. As a
result, there are even more grammars to be checked
for consistency. Also, we are no longer restricted to
plain grammar equivalence, but language extensions,
restrictions, or revisions would need to be captured
and checked. Hence, we need a generalized form of
grammar consistency checking that can also account
for deltas.

5 Grammar convergence

In [4], we have begun to address the fundamental
problem of grammar diversity by initiating a method
for grammar convergence. This method combines
grammar extraction (to obtain raw grammars from ar-
tifacts and represent them uniformly), grammar com-
parison (to determine nominal and structural differ-
ences between given grammars), and grammar trans-
formation (to represent the relationships between
given grammars by transformations that make the
grammars structurally equal). Grammar convergence
is another method of grammar engineering — as such,
it is a companion of grammar recovery, adaptation,
and inference.



The specific property of convergence is that an in-
direct path is taken when several grammars are trans-
formed and only then related to one another by re-
verse engineering the transformations—as opposed to
any process that starts from a single grammar, or any
process that can reverse engineer the research target
directly, or any process that can match software arti-
facts with one another directly.

6 The JLS study

In [5] we have described a completed, major study for
grammar convergence, and refined the method to pro-
vide better scalability and reproducibility. The study
concerned the 3 different versions of the Java Lan-
guage Specification (JLS) [1, 2, 3]. Each of the 3 JLS
versions contains 2 grammars: one grammar is said
to be optimized for readability, and the other one is
intended as a basis for implementation. The earlier
assumption of all grammars being BNFs holds here.

One would expect that the different grammars per
version are essentially equivalent in terms of the gener-
ated language. As a concession to practicality, imple-
mentability in particular, one grammar may be more
permissive than the other. One would also expect that
the grammars for the different versions generate lan-
guages that engage in an inclusion ordering because of
the backwards-compatible evolution of the Java lan-
guage. Those expected relationships of (liberal) equiv-
alence and inclusion ordering are significantly violated
by the JLS grammars, as our study shows.

The JLS is critical to the Java platform — it is
a foundation for compilers, code generators, pretty-
printers, IDEs, source code analysis and manipula-
tion tools and other grammarware for the Java lan-
guage. The JLS is the authoritative specification of
Java. Hence, there is a strong incentive for an un-
ambiguous, consistent and understandable set of JLS
documents. Still, our study discovers substantial in-
consistencies with the help of grammar convergence.

7 Contributions

The motivation of our work and its significance is not
limited to the mere discovery of bugs in the Java stan-
dard or in any other set of grammars for that matter.
(In fact, some JLS bugs have been discovered, time
and again, by means of informal grammar inspection
or other brute force methods.) The significance of our
work is amplified by two arguments. First, we provide
a simple and mechanized process for accidental or in-
tended differences between grammars. Second, we are
able to represent the differences in a precise, opera-
tional and accessible manner — by means of gram-
mar transformations. In different terms, we are prac-
tically able to prove (or disprove) the equivalence of
two given grammars. Our method allows for gram-
mar diversity while supporting grammar consistency
checking.

Nontrivial relationships between grammars of in-
dustrial size were recovered. (That is, we show
that the grammars are equivalent modulo well-defined
transformations.)

A mechanized, measurable and reproducible pro-
cess for grammar convergence has been designed. The
process consists of well-defined phases and its progress
can be effectively tracked in terms of the numbers of
nominal and structural differences between the gram-
mars at hand.

A comprehensive operator suite for grammar trans-
formation has been worked out, driven by the scale of
the study. The suite substantially improves on previ-
ous attempts.

The complete JLS effort: the involved sources,
transformations, results, and tools is publicly avail-
able through SourceForge (http://slps.sf.net).

The approach, as it stands, faces a productivity
problem. The transformation part of grammar con-
vergence requires substantial effort by the grammar
engineer to actually map any given grammar differ-
ence into a (short) sequence of applications of oper-
ators for grammar transformation. For instance, the
JLS transformations required several weeks of work.
Such costs may be prohibitive for widespread adop-
tion of grammar convergence.

Notable productivity gains can be expected from
advanced tool support. We currently rely on basic
batch execution of the transformations. Instead, the
transformations could be done interactively and in-
crementally with good integration for grammar com-
parison, transformation and error diagnosis. Ulti-
mately, we need to provide inference of relationships
(in fact, transformations). Such inference is a chal-
lenging problem because the convergence process in-
volves elements of choice that we need to better un-
derstand before we expect reasonable results.

References

[1] J. Gosling, B. Joy, and G. L. Steele. The Java Lan-
guage Specification. Addison-Wesley, 1996. Available
at java.sun.com/docs/books/jls.

[2] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The
Java Language Specification. Addison-Wesley, sec-
ond edition, 2000. Available at java.sun.com/docs/

books/jls.
[3] J. Gosling, B. Joy, G. L. Steele, and G. Bracha.

The Java Language Specification. Addison-Wesley,
third edition, 2005. Available at java.sun.com/docs/
books/jls.

[4] R. Lämmel and V. Zaytsev. An Introduction to Gram-
mar Convergence. In Integrated Formal Methods, 7th
International Conference, IFM 2009, Proceedings, vol-
ume 5423 of LNCS, pages 246–260. Springer, 2009.

[5] R. Lämmel and V. Zaytsev. Recovering Grammar
Relationships for the Java Language Specification.
In Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, pages 178–
186. IEEE, Sept. 2009. Full version submitted for jour-
nal publication.


