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ABSTRACT
Automation of grammar recovery is an important research
area that received attention over the last decade and a half.
Given the abundance of available documentation for soft-
ware languages that is only going to keep increasing in the
future, there is need for reliable extraction techniques that
allow grammar engineers to derive useful information from
it. This information can be further used to build grammar-
ware, like parsers or test generators, or to perform gram-
mar investigation. Grammars obtained systematically from
existing sources always have preference over manually con-
structed ones due to traceability of their issues, including
errors and design weaknesses. This paper focuses on auto-
mated grammar recovery from sources that utilise a family
of metasyntaxes known as EBNF: many language specifica-
tions extend the well-studied Backus Naur Form in different
directions, resulting in unnecessary diversity of syntactic no-
tations. To enable manipulation of EBNF families, we use
EDD, the EBNF Dialect Definition, a recently published
DSL for notation specification, and base our approach on
human-specified indications that guide the subsequent auto-
mated heuristic-based recovery process. Two separate sce-
narios are considered in the paper: a reliable syntactic nota-
tion and an unreliable one, with the latter being remarkably
more difficult to handle, but also substantially more useful
since it is so often encountered in practice. The proposed ap-
proach has been verified by two prototypes that were capa-
ble of extracting dozens of grammars written in 42 different
syntactic notations.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Error handling and re-
covery; D.3.1 [Formal Definitions and Theory]: Syn-
tax; F.4.2 [Grammars and Other Rewriting Systems]:
Parsing; F.4.3 [Formal Languages]: Operations on lan-
guages—grammar recovery
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1. INTRODUCTION
Software engineering, and grammarware engineering in

particular, has been facing the problem of abundance of no-
tation for syntactic definitions for quite a long time [22].
With many grammars in existence, it is desirable for a lan-
guage engineer to reuse them instead of developing new ones
by hand from scratch. Quite a number of grammar recovery
projects were attempted and successfully performed during
the last decade and a half [14, 15, 17, 20, 21, 23, 24, 25,
26, 28, 29]. When recovering a language grammar from an
existing source, one faces various challenges ranging from
character level issues (e.g., layout inconsistencies) to lan-
guage level issues (e.g., grammar connectedness).

In the current paper, the main problem that we are solving
is how to reuse grammar artefacts that are written
in different notations. We wanted a method that reli-
ably works on a big number of grammars of industrial size,
obtained from unreliable sources, and that is easily repro-
ducible for future derivatives. We have addressed these chal-
lenges of dealing with different notations for syntactic def-
initions (“metasyntaxes” from now on, dialects of (E)BNF)
parametrically. We use the metametasyntax proposed in
[26] as a stepping stone to enable manipulation of fami-
lies of metasyntaxes. The approach is not specific to any
metaprogramming (or rather, metametaprogramming in our
context) language.

All the tools and grammars related to this paper are dis-
tributed freely through a project called Software Language
Processing Suite (SLPS) [29] and its online GitHub repos-
itory. The semi-automated notation-parametric grammar
recovery tool is written in Rascal [10] and is publicly avail-
able as topics/recovery/edd2rsc. The fully automated
notation-parametric grammar recovery tool is written in Py-
thon and is publicly available as well as the Grammar
Hunter (see topics/recovery/hunter), with a Rascal ver-
sion in development (will be released as a standard library
after sufficient polishing and documenting).

The rest of the paper is structured as follows. §2 provides
an extensive overview of previously existing work directly re-
lated to grammar recovery from manually constructed sources.
In §3 we consider a semi-automated scenario which works
smoothly only for reliable notations and requires interac-
tion with a human grammar engineer otherwise. We have
validated this approach on all notations that were specified
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during recovery of grammars for the Grammar Zoo [29], with
one example of them provided in the same section (an in-
terested reader can get the rest freely from the web). In §4
a substantially more advanced algorithm is demonstrated to
enable full automation. The internal details of the prototype
tool, Grammar Hunter, are presented in several blocks
for the sake of reproducibility and reporting design details.
Grammar Hunter was validated by successfully feeding it
diverse language manuals and standards (also available at
the Grammar Zoo). Conclusions are drawn in §5.

2. GRAMMAR RECOVERY PROGRESS &
TIMELINE

One of the first studies in grammar recovery dates back
to 1996 and is reported by Sellink and Verhoef [20]: it con-
cerns Message Sequence Charts, a DSL described in a Word
document, which was converted to Postscript for the lack of
API at that time. The Postscript document was converted
to an ASCII file which was processed by a Perl script and
produced BNF rules, which were in turn manually edited
with all 14 changes claimed to be documented. Another
script was used to generate a hypertext form of a grammar
suitable for browsing.

Van den Brand, Sellink and Verhoef reported in 1997 on
successfully obtaining a COBOL grammar capable of han-
dling a range of language dialects [21]. The help of a Master
student was used to convert 1100 production rules of the
ANSI COBOL 85 standard to SDF. A long and sophisticated
process of forced coupling followed, leading to (disciplined)
changes brought both to the codebase and to the grammar,
and resulting in capability of the adjusted grammar to parse
the adjusted source code.

Switching System Language (SSL), also reported by Sell-
ink and Verhoef in 2000 [20], was a proprietary DSL docu-
mented in a set of HTML files containing its grammar in an
BNF dialect they called SBNF. The endeavour is remark-
able for our current work in a way that it was an attempt to
use precise parsing on an unreliable source. A range of (as
we now know) typical issues arose such as naming conven-
tion violations and non-matching brackets, and significant
amount of interactive grammar adjustments was needed.
The project succeeded also due to development support of
the ASF+SDF Meta-Environment, resulting again in the sit-
uation where an adjusted SBNF grammar was used to parse
adjusted syntax rules.

Programming Language for EXchanges (PLEX) is another
notable example, which was reported by Lämmel and Ver-
hoef in 2001 [14]. It was a complex DSL consisting of 20
sublanguages (sectors) and having over 60 Mb of grammar-
ware source code. The mining process delivered fragments
of BNF found in the comments, which with the help of six
parsers were transformed to pure aggregated BNF and sub-
sequently to SDF, which was combined with a lexer. The
project took only two weeks and resulted in parsing 8 MLOC
of unmodified PLEX.

The case of IBM VS COBOL II is one of the most com-
plicated among those reported in academic sources: it was
described in a different paper by Lämmel and Verhoef in
2001 [15]. A raw grammar was extracted from the language
documentation, which was already a bit tricky since it used
“railroad track” kind of syntax diagrams instead of purely
textual BNF. After static errors were taken into account and

the lexical syntax was added, the project entered the phase
of test-driven correction and completion. Several phases of
grammar recovery followed, including beautification, mod-
ularisation, disambiguation and adaptation. The IBM VS
COBOL II grammar is still freely available for reuse from
the authors’ website [13].

Until 2005 it could have been assumed that grammar re-
covery is only needed for legacy languages like COBOL and
for badly documented DSLs developed in-house. However, a
set of very similar problems arose with C#, the most mod-
ern language of the time, as reported in [23]. In order to
parse C# code, the project involved manual transition from
the ECMA-produced PDF to LLL and intensive grammar
transformation with FST and GDK.

In 2009, Lämmel and Zaytsev demonstrated a different
approach to grammar recovery [16]. They opted for the
lightweight extraction with choosing only reliable sources as
starting points (SDF [5], ANTLR [18], DCG [19], TXL [4],
LLL [12]), mapping the basic features to the target notation
and abstracting out the rest. Grammars of FL, Fortran,
Modula-3, BNF, EBNF, YACC were extracted using this
approach: they have proven to be quite useful for gram-
mar analysis, but they are unsuitable for parsing as such.
The main reasons are lacking lexical sections and the simple
straightforward nature of the process that lets the extracted
grammar stay true to the source while still containing its
specific bugs.

In the next years the same authors extended their ap-
proach and added tolerance to layout inconsistencies and
other lexical deviations of the source grammars. This shift
back from extraction to recovery resulted in a successful
grammar recovery and a detailed grammar analysis of Java
1.0, 1.2 and 5.0 [17], extraction of ISO-published grammars
of C, C++ and C# [24], turning scattered fragments of the
MediaWiki grammar into an operational artefact [25, 28],
as well as to similar results with languages like Ada, C++,
Dart, Eiffel, Modula-3 [29]. The current paper presents ex-
perience collected during those various projects and reports
on two tools (edd2rsc and Grammar Hunter) that per-
form interactive and robust grammar recovery correspond-
ingly, while both relying on a set of indications provided by
a grammar engineer as a specification for intended syntactic
notation [26].

3. SEMI-AUTOMATIC NOTATION-PARA-
METRIC GRAMMAR RECOVERY

Let us make an assumption that the notation of the source
for grammar extraction to be reliable. Given a notation
specification in EDD, our tool called edd2rsc automatically
produces a Rascal grammar. This grammar can be used in
many ways, in particular for parsing reliable sources from
other metaprograms and for opening any well-formed gram-
mar in this notation in Eclipse IDE with coloured syntax
highlighting, as seen on Figure 1. Any notation violations
are visible to the grammar engineer as parsing errors and
can be treated one by one (hence “semi-automatic”). This
method is particularly useful for bulk imports of grammars
extracted from parser specifications: since those are exe-
cutable artefacts of a different grammarware framework (i.e.,
parser generator), their syntax is fairly stable and can be
directly mapped to the target notation. Many grammar-
ware frameworks use notations that can be regarded as di-



Figure 1: A C# grammar [23] in LLL opened in
Eclipse.

alects of (E)BNF, among notable examples we can name
ANTLR [18], GDK [12], JavaCC [3] and YACC [9].

Any Backus-Naur Form, notwithstanding its extended-
ness, works as follows: a defining nonterminal is written on
the left hand side, followed by a so called defining metasym-
bol (such as “:”), followed by the right hand side, followed
by a terminator metasymbol (such as “;”) that signals the
end of a production rule. A grammar may consist of several
subsequent production rules. The right hand side of any
production is a list of alternatives separated by a definition
separator metasymbol (such as “|”), and every alternative is
a list of symbols separated by a concatenation metasymbol.
If the expected values of all metasymbols are known from
the notation specification, it is easy to capture the contents
of this paragraph in a grammar.

Any notation specification already available at the Gram-
mar Zoo, any notation derived by notation transformation
(our future research focus) or any other notation specifica-

tion can be provided as an input for edd2rsc. To demon-
strate how it works, let us consider one of them, namely LLL,
a notation of the Grammar Deployment Kit [12, 11], which
was chosen purely for its simplicity and for being LDTA
material. Interested readers are once again recommended to
try the tool themselves.

Figure 2 shows LLL expressed in LLL: the definition is
taken from the online manual since it reflects a newer ver-
sion compared to the original paper; with all editions freely
available for viewing and downloading at the Grammar Tank
project page [29]. Figure 3 expresses the same notation in
terms of EBNF Dialect Definition (EDD), a DSL introduced
in [26], with metasymbol names heavily influenced by ISO
EBNF [7]. From that specification, a Rascal grammar can
be generated with edd2rsc, a tool that covers much more
functionality than needed for this simple example, and still
is hardly longer than 200 lines of Rascal code. The resulting
grammar can be seen on Figure 4: being small and straight-
forward, it still provides nice IDE support, as we have seen
on Figure 1, and a good start for metaprograms that need
to manipulate LLL grammars.

4. AUTOMATIC NOTATION-PARAMETRIC
GRAMMAR RECOVERY

Suppose a source in a form of an electronic language ref-
erence manual. It probably includes an explicit grammar
of the language, but presents it with its own peculiar nota-
tion. The grammar text can be either copy-pasted or OCRed
from it. Using both the section of the language document
that describes the notation and the grammar fragments, we
can reverse engineer the syntactic notation and specify it
in EDD. However, an attempt to parse such a grammar file
precisely with it will fail, because symbols will be misspelled,
misplaced, left out, etc — unintentional mistakes and incon-
sistencies encountered regularly in handcrafted grammars.

An alternative approach to the one presented in the previ-
ous section, is to not always rely on the syntactic notation.
Indeed, we can formulate a list of heuristics that can be
used to overcome notation deviations without human ex-
pert intervention: based on context and circumstances, cer-
tain hypotheses can be formulated and verified, and cor-
recting actions can be taken based on the outcome. For
example, if a production rule lacks terminator metasym-
bol, it is added; if a metasymbol is misspelled and there
is enough evidence to infer the correct one, it is repaired;
if indentation and markup information is lost, tokens are
identified based on layout-independent criteria. The expe-
rience we have collected with recovering grammars semi-
automatically, was channelled into development of a tool
called Grammar Hunter. It requires a notation speci-
fication as a parameter and delivers the recovered gram-
mar to the best of its knowledge. Post-extraction correction
is needed in cases where the necessary information is not
present in the source and cannot possibly be inferred (e.g.,
a production omitted from a standard completely).

The solution we propose is laid out in detail in the fol-
lowing sections, with the whole process split into different
subsequent blocks:

Block 1: Selective line reading.
Reads the file, fetches grammar fragments, applies line
continuation rules to relevant lines, filters out com-
ments, delivers the list of characters.



specification : rule+;
rule : ident ":" disjunction ";";
disjunction : {conjunction "|"} +;
conjunction : term+;
term : basis repetition?;
basis : ident

| literal
| alternation
| group
;

repetition : "+" | "*" | "?";
alternation : "{" basis basis "}" repetition;
group : "(" disjunction ")" ;

Figure 2: LLL expressed in LLL, taken from the GDK reference manual [11].

defining metasymbol : definition separator metasymbol |
terminator metasymbol ; start one line comment metasymbol #
postfix optional metasymbol ? nonterminals may contain - /
postfix star metasymbol * postfix plus metasymbol +
start terminal metasymbol " end terminal metasymbol "
start group metasymbol ( end group metasymbol )
start separator list star metasymbol { end separator list star metasymbol } *
start separator list plus metasymbol { end separator list plus metasymbol } +

Figure 3: LLL notation specification, pretty-printed from LLL1.edd for publishing purposes.

module LLL
import util::IDE; // needed only for advanced IDE support (see last two lines)
start syntax LLLGrammar = LLLLayoutList LLLProduction* LLLLayoutList;
syntax LLLProduction = LLLNonterminal ":" {LLLDefinition "|"}+ ";";
syntax LLLDefinition = LLLSymbol+;
syntax LLLSymbol
= @category="Identifier" nonterminal: LLLNonterminal
| @category="Constant" terminal: LLLTerminal
| group: "(" LLLDefinition ")"
| optional: LLLSymbol "?"
| star: LLLSymbol "*"
| plus: LLLSymbol "+"
| sepliststar: "{" LLLSymbol LLLSymbol "} *"
| seplistplus: "{" LLLSymbol LLLSymbol "} +";
lexical LLLTerminal = "\"" LLLTerminalSymbol* "\"";
lexical LLLTerminalSymbol = ![\"];
lexical LLLNonterminal = [A-Za-z_01-9\-/]+ !>> [A-Za-z_01-9\-/];
layout LLLLayoutList = LLLLayout* !>> [\t-\n \r \ ] !>> "#";
lexical LLLLayout = [\t-\n \r \ ] | LLLComment ;
lexical LLLComment = @category="Comment" "#" ![\n]* [\n];
Tree getLLL(str s,loc z) = parse(#LLLGrammar,z);
public void registerLLL() = registerLanguage("LLL","lll",getLLL);

Figure 4: LLL expressed as a Rascal grammar, generated automatically from the notation specification.

Formal Parameters
Every function declaration includes a formal parameter list, which consists ...
The following can be simplified to:
formalParameterList

: ’(’ normalFormalParameters (‘,’ optionalFormalParameters)? ’)’
;

optionalFormalParameters
: restFormalParameter |
namedFormalParameters

;
normalFormalParameters:

normalFormalParameter (’,’ normalFormalParameter)*
;

Positional Formals
A positional formal parameter is a simple variable declaration.

Figure 5: A fragment of the Dart grammar, taken from the “download as text” result from [2] and slightly
edited for the sake of simplicity.

http://github.com/grammarware/slps/blob/master/shared/edd/lll1.edd


Block 2: Composition of tokens from characters.
Transforms the list of characters into the list of tokens,
while taking quoting rules into account.

Block 3: Tokens classification.
Classifies each token as a terminal, nonterminal or a
metasymbol.

Block 4: Token groups normalisation.
Converts postfix/prefix to confix, delivers the list of
grammar rules.

Block 5: Context-dependent reconsideration.
Performs correction heuristics: decomposes and assem-
bles symbols, rebalances symmetric metasymbols, ig-
nores negligible leftovers.

Readers who prefer to have a running example and can go
through extreme amounts of tiny implementation details,
are redirected to a full report on MediaWiki grammar re-
covery [25] or to its less extreme variant [28], all grammars
discussed there were also recovered with Grammar Hunter.

4.1 Block 1: Selective line reading
The main purpose of Block 1 is to get from a file or any

other form of input stream to a list of textual lines. Since
our main focus is on recovering grammars from documenta-
tion, it usually involves working with physical lines, filtering
and cropping them, but one can imagine much more intri-
cate algorithms if our approach is reapplied to mining or
carving. At the end of Block 1, we would have applied all
notational policies formulated based on lines, with all the re-
maining ones relying on characters and their specific relative
positions.

Grammar Hunter starts by reading the lines of the tex-
tual part of the source. It turns out that many notation
policies are based on the notion of a physical line of code,
and those policies are the ones that need to be accounted
for before anything else. If grammar fragment delimiters
are known, then Grammar Hunter collects all fragments,
otherwise it treats the whole input as one big fragment.
Ignored lines are filtered out: one can possibly introduce
an advanced mechanism for that (regular expressions, mini-
grammars, etc), but for all scenarios we have encountered
so far it was enough to filter undesirable lines by keywords.
For example, the grammar text copied from the ISO C++
standard [6] contains a header line “ISO/IEC 14882:1998(E)
c© ISO/IEC” several times, and it is rather straightforward

to drop them on the level of working with lines.
In the worst situation, grammar fragment delimiters are

not known and not used, but the input file still contains a
lot of auxiliary information. It happens with sources that
were taken as flat textual files with no structural clues. In
this case, we need to step down to the next best notation-
driven heuristic, which is to rely on defining and terminator
metasymbols. A grammar fragment is then defined as any-
thing starting with a token that can be a nonterminal name,
followed by a defining metasymbol, and ending with a termi-
nator metasymbol. For instance, consider the code from Fig-
ure 5. If we know that defining metasymbol is“:” and termi-
nator metasymbol is “;”, we will be able to extract produc-
tion rules for nonterminals formalParameterList, optional-
FormalParameters and normalFormalParameters.

Many language specifications, especially the ones created
in the 70s and 80s, had to deal with specific format limita-
tions of their target architectures even on the textual level.

One of the popular limitations was a fixed maximum char-
acter capacity of one line: i.e., when the line needed to be
longer than that maximum, it had to be explicitly split into
several lines. This is done by using a line continuation pol-
icy, which we need to process in this block.

Just as with any programming language, comments can
and should also be (dis)regarded as whitespace. Most of the
(E)BNF dialects used for language documentation either do
not have any commenting notation or have one-line com-
ments, but it is not uncommon for executable notations used
in compiler compilers to have multiline comments. Since
they can have specific characters inside them, which will im-
pede the recovery process later on, we remove all comments
in this block. The remaining lines go through a trivial step
of being converted to a list of single characters.

4.2 Block 2: Composition of tokens from char-
acters

This block derives a list of tokens from the list of charac-
ters. A token is usually a nonterminal symbol, a terminal
symbol or a metasymbol, but depending on the notation, a
token can also be a special indentation marker or just an
unknown type of symbol. The output expected from Block
2 is a list of unclassified tokens.

In [26], we speak of whitespace reliability as a decision
point: whether to trust whitespace to separate one token
from the next one, or to assign token boundaries based on
other heuristics. In general, these are two fundamentally
different ways to approach layout. Pretty-printed grammars
like the one we have seen on Figure 1 are the most reliable
with respect to layout, but in the case of LLL it is not crucial
since that notation was specifically designed by professional
grammar engineers. In many cases like the notation used in
Java grammars which we considered in detail in [17], differ-
ent alternatives on the right hand side of every production
rule are separated by indentation only, so one must rely on
such whitespace to identify them, but at the same time one
should disregard any other whitespace because tokens often
appear glued together anyway. Problems arise when one
(crucial) kind of whitespace cannot be told from the other
(negligible) kind.

In the original BNF [1], nonterminals were enclosed in <

and >, and anything unenclosed was considered to be a ter-
minal. In the original EBNF [22], terminals were quoted,
and anything unquoted was considered to be a nonterminal.
All syntactic notations ever since choose either of these ways
or both. The unintentional case when neither nonterminals
nor terminals are delimited must be experienced when the
documentation creators decide to mark them with a specific
font, but the extraction procedure cannot extract that kind
of information from the document. In any case, when any of
the delimiters are known, we can immediately start compos-
ing multi-character tokens, also paying attention to escape
rules (e.g., for quotes between quotes) if they are present.
Multi-character metasymbols are also be assembled in this
block, since they rarely occur in unquoted form outside their
deserved context.

4.3 Block 3: Tokens classification
This block finalises the process of classification of single

tokens, all ambiguous roles get resolved here. We emphasize
the focus being on single tokens, since the following two
blocks concern themselves with classification of tokens or



adjusting their roles based on context.
There are several commonly encountered naming conven-

tions for nonterminals. The most important and well-known
ones are UPPERCASE, lowercase, CamelCase and mixedCase.
Properly cased words can be glued together or concatenated
with a space, and underscore or a dash as a separator. For
more details and usage statistics the interested reader is
referred to [26]. If any convention is known, Grammar
Hunter can utilise it to classify particular tokens as non-
terminal symbols.

In grammar engineering practice, it is unheard of, for
nonterminals to have non-alphanumeric names: hence, all
non-alphanumeric tokens of unknown type can be assigned
a role of a terminal (unless this particular combination of
characters can also be a metasymbol). One should of course
be cautious with borderline characters like “-”, “_” or “/”
that can sometimes be a part of a nonterminal name (i.e.,
“class-name” is most probably a valid nonterminal name,
while “-” most probably is not). This heuristic is applied ag-
gressively: even if something like a curly bracket is marked
as a nonterminal, this is bound to be a mistake that needs to
be corrected, since a curly bracket is not a valid nonterminal
name unless otherwise specified. Conventions like these can
be manually written or derived by application of machine
learning techniques.

4.4 Block 4: Token groups normalisation
This block searches for specific patterns of occurrence of

symbols and metasymbols, and performs normalisation on
them. Its input is a heterogeneous list of tokens, but its
output is already a structured grammar, with separate pro-
duction rules, alternatives, explicit grouping of symbols and
similar features that make it less of a list and more of a tree.

Conceptually, the most important normalisation is com-
position of grammar production rules from sublists of to-
kens. This is done with the help of terminator and defining
metasymbols, and in total there are four scenarios possible:

Only terminator metasymbol is known.
Since terminator metasymbols were originally meant
to separate production rules, we can use them directly
to slice the tokens list in pieces in order to treat each
nontrivial piece as a production rule. This heuristic
is very straightforward and flexible, but the less reli-
able the notation is, the more errors are introduced by
relying only on terminator metasymbols (they can be
easily forgotten or misspelt in manually created gram-
mars).

Only defining metasymbol is known.
Similarly, Grammar Hunter will rely on defining
metasymbol to slice the token list into productions.
Combined with checking for the alphanumeric nature
of the token directly preceding the defining metasym-
bol (the best candidate for the defining nonterminal),
this proves to be quite a reliable heuristic. It should be
noted here that knowing a location of defining meta-
symbol is slightly more reliable with respect to identi-
fying the left and the right hand sides of the produc-
tion, for a number of reasons: the token immediately
following the terminator metasymbol, is not necessar-
ily the defining nonterminal of the next production (it
can be an optional part of the same terminator meta-
symbol, a production label or anything else), and the

token immediately following the left hand side, is not
necessarily the defining metasymbol (unreliability may
cause it to spread over several tokens or be completely
lacking).

Both terminator and defining metasymbols are
known.

Besides using this information to make the recovery
process more stable and precise, our tool will also per-
form double checks in cases like this one when more
information is provided than usual, and report on any
mismatches between the metasymbol values expected
from the specification and the metasymbol values ex-
pected after analysing the source grammar text.

Neither terminator and defining metasymbols are
known.

Even when no information is provided by the nota-
tion specification, Grammar Hunter can still infer
enough information to complete the recovery process:
in particular, frequency analysis was observed to be
among the most reliable techniques: for each unique
token, we count how many times it occurs in the gram-
mar being recovered. In big grammars the most com-
monly encountered tokens are usually either layout
or terminator and defining metasymbols. Grammar
Hunter takes the most popular ones and tries them
out in various combinations. When a decision like this
is taken, the certainty is reported to the end user.

Many contemporary language documents use the so called
multiple defining metasymbol (“one of”) which quite often
remains undocumented. It is used instead of the normal
defining symbol and changes the semantics of the right hand
side of its production rule: the list of symbols are treated as
a choice, not as a sequence.

Grouping tokens in productions is one of the two most
important activities of Block 4. It is just as important to
convert all postfix (and much more rare prefix) metasymbols
to confix ones1. Normalising all metasymbols that affect the
structure of the grammar, notwithstanding the arity, to the
confix form, gives more power to the heuristics of the next
block, as well as more structure that needs to be recovered
anyway.

4.5 Block 5: Context-dependent reconsidera-
tion

The role of Block 5 is to reconsider particular metaroles of
symbols based on the context where they occur. The heuris-
tics exercised in this block are not necessarily involved in the
grammar extraction process as such, but because we specif-
ically address the unreliable syntactic notation scenario, it
is useful to have a round of notation-driven corrections.

There are several situations when one token that has sur-
vived through all the previous blocks, needs to be decom-
posed into two tokens. The most common situation occurs
when a postfix metasymbol is alphanumeric (i.e., “opt” in-
stead of “?” for marking optionality) and the documentation
creators were using a different font variant to explicitly mark

1A postfix metasymbol occurs immediately after a symbols
it affects (e.g., “t*”). A prefix metasymbol occurs right be-
fore a symbols it affects (e.g., “!t”). Confix metasymbols
form a pair that both precede and follow the affected sym-
bols (i.e., it is a bracketing construction).



it, but that information could not be propagated to the ex-
tractor. For example, in the Java Language Specification
ClassBodyopt should be disassembled into a nonterminal
ClassBody and a postfix optionality metasymbol opt [17,
p.352].

The opposite situation occurs when the font change er-
roneously happens in the middle of a token, if that font
change is perceived as a token boundary. This deviation is
common for handcrafted documentation which creation pro-
cess is prone to misclicks. For example, in a different version
of the Java Language Specification we have seen cases like
“continu e” and “S witchBlockStatementGroups” — the for-
mer was turned into a terminal symbol because it matched
the naming convention by being completely lowercase; the
latter was turned into a nonterminal symbol because such a
hypothesis was formed and verified by finding a definition of
the nonterminal SwitchBlockStatementGroups [17, p.351].
It is crucial that the hypothesis needs to have a good reason
to be formulated and only then verified, since it is not un-
common for grammars in language documentation to have
a nonterminal symbol and a terminal symbol share a name:
for example, the Ada grammar has “pragma”, “range” and
“body” [8].

There are more assumptions that can be formulated about
the symbol roles: for example, that confix metasymbols
should have some symbols between them (unless that is a
special notation for ε); that infix metasymbols should not
occur as the first or the last in a sequence; that postfix
metasymbols should not start a sequence and prefix ones
should not end it; that confix metasymbols should occur in
pairs. These assumptions are verified and if not satisfied,
the suspicious symbols need to change their metarole.

Symmetric (confix) metasymbols can be very efficiently
balanced: once forward and once backward. Forward bal-
ancing scans tokens from the occurrence forward to the end
of production in search for the matching nonterminal. If the
metasymbol cannot be balanced, Grammar Hunter at-
tempts to substitute it with another metasymbol with whom
they share lexical representation (e.g., on Figure 3 we see a
separator list star and a separator list plus are both started
with “{”). Similar algorithm is applied backwards, when
we scan the context from the end metasymbol occurrence
toward the start. If all hypotheses fail, the role of an unbal-
anced metasymbol is changed to a terminal.

When a grammar is meant to be complete and fully con-
nected (i.e., with one top nonterminal and no bottom non-
terminals), we can adjust the notation specification with
a policy to treat all undefined nonterminals as terminals.
Heuristics like this reside in Block 5 since in order to calcu-
late top, bottom and defined nonterminals, one has to have
confidence in the rest of the grammar.

5. CONCLUSION
Based on the generalised way to specify a syntactic nota-

tion as EDD [26], we enhance the technique of grammar re-
covery [15] by applying a set of heuristics extended compared
to [17] and parametrised with the details of the assumed syn-
tactic notation. Two prototype notation-parametric gram-
mar recovery tools have been developed and presented: a
semi-automatic edd2rsc that works best with families of
source grammars using the same syntactic notation reli-
ably; and a fully automatic Grammar Hunter that con-
tains five blocks of heuristics and performs tolerant scan-

ning and parsing of unreliable sources. In order to evaluate
the chosen methodology, we have used it to recover dozens
of grammars of Ada, Basic, C, C++, C#, Dart, EBNF,
Eiffel, Fortran, Java, LLL, Modula-3, Wiki, WSN, XPath
and YACC, with most being of industrial size. Grammar
Hunter successfully works on grammars with notation de-
viations and successfully overcomes the majority of prob-
lems posed by unreliable syntactic notations often found in
handcrafted manuscripts, as our experiments show. Both
tools, as well as all recovered grammars, are released as open
source and made available through Software Language Pro-
cessing Suite (SLPS), a GitHub project that can be found
on http://grammarware.github.com. The grammars recov-
ered with Grammar Hunter form a considerable part of the
Grammar Zoo [29]. After some finishing touches, exten-
sive testing and polishing documentation, Grammar Hunter
will be officially released as a standard library of the Rascal
meta-programming language [10].

Semi-automatic notation-parametric grammar recovery is
most suitable for grammar engineers who prefer to edit their
grammars in place: edd2rsc provides them with an easy way
to get the IDE support for their activities. The same ap-
proach is also perfect for importing executable parser spec-
ifications in bulk. Highly reliable and error-tolerant auto-
matic notation-parametric grammar recovery tool Gram-
mar Hunter can be used by grammar engineers who seek
balance between automation and traceability.

Just as with any scenario involving imprecise mapping,
there are two fundamentally different approaches to normal-
isation (performed by Grammar Hunter as described in sub-
section 4.4). First, we could try to express all encountered
syntactic constructions in terms of the target syntactic func-
tionality. Alternatively, we could attempt to fit as much of
the original constructions into the target functionality, ex-
tending it if necessary. As it turns out, this choice does not
matter for our normalisations (composing production rules
from a heterogeneous stream of tokens and converting meta-
symbols to a confix form).

One of the problems closely related to notation-parametric
grammar recovery is systematic evolution of syntactic nota-
tions, which should be coupled to the evolution of grammars
written in that notation — it is studied in detail in [27].

The list of yet to be solved problems includes investi-
gating automated inference of notation specifications from
the available grammarbase, similar to how grammars can
be constructed from codebases. We also plan to continue
extending the Grammar Zoo.
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