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Abstract. Suppose we have two algebraic data types related in such
a way that functions can be defined to map instances of one type to
instances of the other to maintain consistency. Given the definitions of
these types and these functions, how do we establish a reversible or at
least a correct and hippocratic bidirectional mapping to synchronise the
system of two instances, one of each type, to be able to propagate changes
in any direction? Currently there are no methods yet that can answer
these questions in a general and useful way. In this paper we study con-
crete cases of bidirectionalisation: one turning unidirectional functions
into bijective ones by iteratively completing them with more informa-
tion; and one implementing synchronisation strategies as traversals of
the ADT instances.

1 Motivation

Suppose we have two algebraic data types related in some way so that functions
can be defined to map entities of one type to entities of the other. In prac-
tical software engineering, ADTs can be defined as context-free grammars or
attribute grammars, as classes or data models, as schemata or ontologies, etc,
and the mappings themselves can be implemented in an imperative way with
significant side effects, but we will try to abstract from these details. Given the
definitions of these types and these functions, how do we establish a bidirectional
mapping [1,9,10] to synchronise the system of two entities, one of each type, to
be able to propagate changes in any direction? In particular,

– Given L, R and f : L→ R, how to change f to g such that ∀x ∈ L, g(x) =
f(x), but ∃g−1 : R→ L such that ∀x ∈ L, (g−1 ◦ g)(x) = x?

– Given L, R, f : L → R and g : R → L, how to derive B : L × R → R and
C : L×R→ L such that ∀x ∈ L,∀y ∈ R, xBf(x) = f(x) and g(y)Cy = g(y),
as well as ∀x ∈ L,∀y ∈ R, xC (xB y) = x and (xC y) B y = y?

Currently there are no methods yet that can answer these questions in a
general and useful way. Hence, we study concrete cases of bidirectionalisation
found in practical software engineering, in an endeavour to learn from them.
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2 Convergence case study

2.1 Problem description

Complex transformation scenarios may often be understood as directed, acyclic
graphs with nodes corresponding to models and edges corresponding to model
transformations. One strong instance of this notion is grammar convergence [6]
with the graph being a tree with grammars as nodes and grammar transforma-
tions as edges. For example, the convergence scenario of six Java grammars from
several versions of the corresponding language specification was represented as a
graph with six starting nodes, two final nodes (one for the “readable” converged
target and one for the “implementable” one, according to Java language cre-
ators), 91 intermediate nodes and 70 transformation scripts (some used multiple
times within the transformation graph) comprising in total 1611 transformation
operator applications [7].

Rearranging such transformation graphs (e.g., adjusting the convergence
tree) or changing their topology (e.g., deriving a coevolution scenario from a
convergence tree) is difficult unless certain important graph refactorings are ef-
fectively supported, in particular inverting edges and propagating nodes through
the tree. This objective becomes feasible, if relations between adjacent nodes are
bidirectional.

2.2 Technical details

XBGF [6] is a language for specifying grammar transformation steps. In fact, it
is a library of functions such as define(p+) or renameN(n1, n2), which serve
as parameterised operators. The transformation script in XBGF is a superpo-
sition of function calls to them. ΞBGF1 [11] is a bidirectional counterpart of
XBGF. It contains a bijective subset of operators, which are made to be re-
versible — removed are abstract algorithms like distribute(n) and shortcutting
like fold(p)/unfold(n) (i.e., the folding operator in XBGF requires a produc-
tion rule that needs to be folded, while the unfolding operator requires only the
nonterminal name; in ΞBGF both need a production rule to work).

The complete operator set of ΞBGF follows, with its implementation2 avail-
able in the open source repository of the Software Language Processing Suite [13].
In operator parameters, e is an expression, n is a nonterminal, s is a selector, t
is a terminal, p is a production, pm is a marked production.

• abridge-detour(p)
→ xbgf:abridge(p)
← xbgf:detour(p)

• abstractize-concretize(pm)
→ xbgf:abstractize(pm)
← xbgf:concretize(pm)

• add-removeH(pm)
→ xbgf:addH(pm)
← xbgf:removeH(pm)

• add-removeV(p)
→ xbgf:addV(p)
← xbgf:removeV(p)

1
ΞBGF is pronounced “ksi bi gi ef”.

2 The implementation of ΞBGF uses a combination of Prolog and XSLT.



• anonymize-deanonymize(pm)
→ xbgf:anonymize(pm)
← xbgf:deanonymize(pm)

• appear-disappear(pm)
→ xbgf:appear(pm)
← xbgf:disappear(pm)

• assoc-iterate(p1, p2)
→ xbgf:lassoc(p2)|rassoc(p2)
← xbgf:removeV(p2)◦addV(p1)

• chain-unchain(p)
→ xbgf:chain(p)
← xbgf:unchain(p)

• clone-equate(p+, n, c∗)
→ xbgf:introduce(p+)◦replace(n, p.n, in ci)
← xbgf:equate(p.n, n)

• concretize-abstractize(pm)
→ xbgf:concretize(pm)
← xbgf:abstractize(pm)

• deanonymize-anonymize(pm)
→ xbgf:deanonymize(pm)
← xbgf:anonymize(pm)

• define-undefine(p+)
→ xbgf:define(p+)
← xbgf:undefine(p.n)

• designate-unlabel(p)
→ xbgf:designate(p)
← xbgf:unlabel(p.l)

• detour-abridge(p)
→ xbgf:detour(p)
← xbgf:abridge(p)

• deyaccify-yaccify(p+)
→ xbgf:deyaccify(p.n)
← xbgf:yaccify(p+)

• disappear-appear(pm)
→ xbgf:disappear(pm)
← xbgf:appear(pm)

• downgrade-upgrade(p1, p2)
→ xbgf:downgrade(p1, p2)
← xbgf:upgrade(p1, p2)

• eliminate-introduce(p+)
→ xbgf:eliminate(p.n)
← xbgf:introduce(p+)

• equate-clone(p+, n, c∗)
→ xbgf:equate(p.n, n)
← xbgf:introduce(p+)◦replace(n, p.n, in ci)

• extract-inline(p)
→ xbgf:extract(p)
← xbgf:inline(p.n)

• factor-factor(e1, e2)
→ xbgf:factor(e1, e2)
← xbgf:factor(e2, e1)

• fold-unfold(n)
→ xbgf:fold(n)
← xbgf:unfold(n)

• horizontal-vertical(n)
→ xbgf:horizontal(n)
← xbgf:vertical(n)

• inject-project(pm)
→ xbgf:inject(pm)
← xbgf:project(pm)

• inline-extract(p)
→ xbgf:inline(p.n)
← xbgf:extract(p)

• introduce-eliminate(p+)
→ xbgf:introduce(p+)
← xbgf:eliminate(p.n)

• iterate-assoc(p1, p2)
→ xbgf:removeV(p1)◦addV(p2)
← xbgf:lassoc(p1)|rassoc(p1)

• massage-massage(e1, e2)
→ xbgf:massage(e1, e2)
← xbgf:massage(e2, e1)

• narrow-widen(e1, e2)
→ xbgf:narrow(e1, e2)
← xbgf:widen(e2, e1)

• permute-permute(p1, p2)
→ xbgf:permute(p2)
← xbgf:permute(p1)

• project-inject(pm)
→ xbgf:project(pm)
← xbgf:inject(pm)

• remove-addH(pm)
→ xbgf:removeH(pm)
← xbgf:addH(pm)

• remove-addV(p)
→ xbgf:removeV(p)
← xbgf:addV(p)

• rename-renameN(n1, n2)
→ xbgf:renameN(n1, n2)
← xbgf:renameN(n2, n1)

• rename-renameS(s1, s2)
→ xbgf:renameS(s1, s2)
← xbgf:renameS(s2, s1)

• rename-renameT(t1, t2)
→ xbgf:renameT(t1, t2)
← xbgf:renameT(t2, t1)



• replace-replace(e1, e2)
→ xbgf:replace(e1, e2)
← xbgf:replace(e2, e1)

• reroot-reroot(n∗1, n
∗
2)

→ xbgf:reroot(n∗2)
← xbgf:reroot(n∗1)

• split-unite(p+, p′+, c∗)
→ xbgf:introduce(p+)
◦ removeV(pi|p.n:=p′.n)
◦ replace(p′.n, p.n, in ci)
← xbgf:unite(p.n, p′.n)

• unchain-chain(p)
→ xbgf:unchain(p)
← xbgf:chain(p)

• undefine-define(p+)
→ xbgf:undefine(p.n)
← xbgf:define(p+)

• unfold-fold(n)
→ xbgf:unfold(n)
← xbgf:fold(n)

• unite-split(p+, p′+, c∗)
→ xbgf:unite(p.n, p′.n)
← xbgf:introduce(p+)
◦ removeV(pi|p.n:=p′.n)
◦ replace(p′.n, p.n, in ci)

• unlabel-designate(p)
→ xbgf:unlabel(p.l)
← xbgf:designate(p)

• upgrade-downgrade(p1, p2)
→ xbgf:upgrade(p1, p2)
← xbgf:downgrade(p1, p2)

• vertical-horizontal(n)
→ xbgf:vertical(n)
← xbgf:horizontal(n)

• widen-narrow(e1, e2)
→ xbgf:widen(e1, e2)
← xbgf:narrow(e2, e1)

• yaccify-deyaccify(p+)
→ xbgf:yaccify(p+)
← xbgf:deyaccify(p.n)

2.3 Migration to bidirectionality

Migrating most XBGF transformation steps to their bidirectional counterparts
is rather straightforward, but in general case, impossible to automate due to the
following cases:

• xbgf:deyaccify(n) → ξbgf:deyaccify-yaccify(?)
• xbgf:distribute(n) → ξbgf:factor-factor(?,?)
• xbgf:eliminate(n) → ξbgf:eliminate-introduce(?)
• xbgf:equate(n1, n2) → ξbgf:equate-clone(?,n2,?)
• xbgf:inline(n) → ξbgf:inline-extract(?)
• xbgf:permute(p) → ξbgf:permute-permute(?, p)
• xbgf:redefine(p+) → ξbgf:undefine-define(?)◦define-undefine(p+)
• xbgf:reroot(r∗) → ξbgf:reroot-reroot(?, r∗)
• xbgf:undefine(n) → ξbgf:undefine-define(?)
• xbgf:unlabel(n) → ξbgf:unlabel-designate(?)

In order to obtain missing information, in our solution we execute all transfor-
mation steps up to the problematic point infer the remaining bits from the inter-
mediate grammar. To demonstrate this process, we have developed a prototype
tool called xbgf2ξbgf, which is freely available via SLPS mentioned above [13].

When executed on the FL case, the original case study of grammar conver-
gence [6] with a tree consisting of 22 XBGF files, our tool migrates 14 of them
by straightforward mapping and infers additional details in remaining 8 cases.
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Fig. 1. Megamodel of various kinds of parsing and unparsing. Dotted lines denote map-
pings that rely on either lexical or syntactic definitions; solid lines denote universally
defined mappings [12]; loops are examples of transformations we consider in this paper.

3 (Un)parsing case study

3.1 Problem description

Different approaches and phases of software language processing feature different
kinds of artefacts, which can be considered to fit into one of twelve categories,
depicted on Figure 1 [12]. Consider three of them:

Str — a purely textual flat string-like representation of a program, easy to edit,
transfer and maintain and familiar to what mainstream programmers are
used to for the last six decades. There is some structure in such a program,
but it is not apparent until the language instance is processed and turned
into a different entity (such as a parse tree).

Ast — an abstract syntax tree, a conceptual representation of a program which
is the most suitable for automated program analysis and assigning semantics.
It lacks certain details specific to Str such as line numbers and indentation



of language expressions, but it encapsulates the structure of the program
very well and can contain computed annotations.

Dra — a drawing of a program in some graphical notation, a visualisation
found useful for domain experts, business analysts, process modellers, soft-
ware auditors or any other kinds of language users more comfortable with
using graphical notation instead of a textual one. Such a drawing contains
lots of extra information about interface elements, their coordinates, colours,
line styles, etc, but can leave some entities unnamed or having no direct cor-
respondence to language constructions.

3.2 Technical details

As we can see, each of the three artefacts has some information that the other two
lack: Str has indentation, Ast has names and annotations, Gra has visualisation
details. This information is of local significance and thus prevents achieving
bijection. Ideally, we would like to preserve this locally important information
through coevolution updates. A typical non-BX-aware toolchain would include
paths such as Str → For → Ptr → Cst → Ast → Fig → Gra → Dra and Dra
→ Gra → Fig → Ast → Cst → Ptr → Tkl → Str. This, due to the lack of
bidirectionality, loses locally important information on every update.

One of the popular approaches, first proposed by Foster et al [3], is to use
a putback function. For example, we could have a get function to obtain Ast
from Str, but its counterpart would be putback : Ast × Str → Str, which would
put the changes done by an automated refactoring tool back into the text of the
program, respecting the original indentation, coding standards and comments.
That way, a refactoring tool can masquerade as acting on Str while in fact it is
only lowered to Str from Ast. Conversely, some edits on Dra are purely local (e.g.,
repositioning an element), while some need to be lifted to Fig (e.g., removing an
element). In situations when both ends of a relation are of equal importance, we
can use maintainers [8,10] instead of lenses — this means essentially having two
putback functions instead of a get/putback pair.

3.3 Migration to bidirectionality

Suppose that we have all twelve definitions of algebraic data types, and enough
unidirectional mappings between them, already defined. Then, the implemen-
tation of each semi-maintainer (each “putback”) is a function that takes two
parameters: the old instance that needs to be updated and the updated instance
of a different type. The process is two-phase: the first step is to convert the
updated instance to the target type, and the second step is to traverse both
the old and the updated entities which now have the same type. The result of
this traversal is a composite instance that has all the shared information from
the updated instance and as much local information as possible from the old
instance.



Str B Ast discards those parts of the abstract syntax tree that do not corre-
spond to any fragments of the updated code, and recalculates all inferred
annotations for the fragments that are new. A truly efficient implementation
of it would feature iterative parsing, for which an old instance of Ptr would
need to be stored as well.

AstBDra displays the abstract model of a program in such a way that all
already recognised elements are placed at their old positions, and the rest
are rendered by default.

DraB Ast checks if any parts of a model have been added or removed, recalcu-
lates annotations for added ones and disregards the parts of the Ast related
to the removed ones.

AstB Str unparses the abstract syntax tree by preserving the indentation of all
recognised fragments of the old code, and pretty-printing the rest.

The code has around 3000 line of documented code in Rascal [4], a functional
language for program analysis and transformation. It is released as open source
and is publicly available from a dedicated repository:
http://github.com/grammarware/bx-parsing.

4 Conclusion

Two practical cases of bidirectionalisation have been described in this abstract.
In §2, a convergence graph with nodes-grammars and edges-transformations was
bidirectionalised by iteratively adding more information to the transformations
until the mapping became bijective. In §3, bidirectional maintainers were imple-
mented as traversals of ADT instances operating on the result of the superposi-
tion of the existing unidirectional mappings and thus achieving preservation of
locally significant information while updating the changed fragments. The results
are of practical and engineering nature, but their generalisation may be useful
for systematic development of new methods of automated and semi-automated
bidirectionalisation in the future.

The source code of all discussed prototypes is released as open source through
two repositories referenced above. It mostly consists of documented Prolog [5]
and Rascal [4] code.

One of the open questions left unanswered is dealing with sustainers [12]
instead of maintainers: I: L×R→ L×R instead of B and J: L×R→ L×R
instead of C. The sustainers are much more interesting because they can model
error-correcting strategies. However, it is yet unclear how to prove termination
of the update strategy in the case of more than two instances (like in §3), which
is required for the general case of model synchronisation [2].
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13. V. Zaytsev, R. Lämmel, T. van der Storm, L. Renggli, R. Hahn, and G. Wachsmuth.
Software Language Processing Suite3, 2008–2014. http://slps.github.io.

3 The authors are given according to the list at http://github.com/grammarware/

slps/graphs/contributors.

http://slps.github.io
http://github.com/grammarware/slps/graphs/contributors
http://github.com/grammarware/slps/graphs/contributors

