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Abstract: Grammars in a broad sense (specifications of structural commitments)
are complex artefacts that define software languages. Assessing and improving their
quality in an automated, non-idiosyncratic manner is an unsolved problem which
we face in an especially acute form in the case of mass maintenance of hundreds of
heterogeneous grammars (parser specs, ADTs, metamodels, XML schemata, etc) in
the Grammar Zoo. In an attempt to apply software language engineering methods to
solve a software language engineering problem, we design a language for grammar
mutations capable of applying uniform intentional transformations in the scope of
a big grammar or a corpus of grammars. In this paper, we describe a disciplined
process of engineering such a language by systematic reuse of semantic components
of another existing software language. The constructs of the reference language are
analysed and classified by their intent, each category of constructs is then subjected
to rewriting. This process results in a set of constructs that form the new language.

Keywords: term rewriting; intentionality; grammar programming; software lan-
guage engineering; grammar mutation; grammarware.

1 Introduction

Although there have been a lot of expert opinions expressed about designing a software lan-
guage [vW65, Hoa73, Wir74, MHS05, VBD+13], the process often remains far from being
completely controlled, and the correspondence of language design decisions with the successful
uses of the language for intended tasks, remains unproven. Formalising domain knowledge and
expressing it algorithmically is what we see as one of the fundamental challenges that the field
of software language engineering is facing.

Our case study concerns a domain-specific language for manipulating grammars in a broad
sense — in fact, structural contracts like language concrete syntaxes or library interfaces [KLV05].
In earlier work, we have been continuously addressing the problem of expressing evolutionary
changes to these structural contracts as transformation steps, showing the superiority of detail
of such specifications to inline grammar editing [Läm01a, LZ09, LZ11]. We have also identi-
fied the need for expressing large scale manipulations — transformation generators [Zay11] or
grammar mutations [Zay12b], cautiously proposing one or two as the practical side dictated.

In this paper, we are determined to construct a full-fledged language for large scale gram-
mar programming, which would implement grammar mutations. If the language for fine-grained
grammar programming had operators like “rename this nonterminal” or “eliminate this unused
nonterminal”, then for the language of large scale grammar programming, we aim to have com-
mands like “rename all nonterminals to lowercase” and “eliminate all unused nonterminals”. In
order to do so, we deconstruct the existing language and intentionally (as in “intentional soft-
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ware” [SCC06]) generalise them. We automate the process of constructing this new software
language, by systematic reuse and rewriting of the preconditions and the rewriting rules of the
original transformation operators.

By applying such a technique to engineer a new language, we expect: (a) to define this new
language, (b) to infer, possibly with some human supervision, its implementation, and (c) to
validate the design of the base language by the possibility of its automated reuse.

Our contributions include, indeed, a new language, defined as 235 elementary grammar mu-
tations that are composable into more complex ones; the implementation of this language within
Rascal language workbench [KSV11], obtained by metaprogramming techniques and semi-auto-
mated rewriting; and we identified several design flaws in the base language. All deliverables are
publicly available through GitHub: the experimental code can be observed in the SLPS reposi-
tory at http://github.com/grammarware/slps, and after sufficient testing and documenting it will
be added to the GrammarLab library of Rascal at http://github.com/cwi-swat/grammarlab. Over-
all, the experiment was successful, and this extensive report on it could be of use for next steps
of research on automated software language engineering.

2 Problem details

In [LZ09, LZ11], we have proposed XBGF1, a software language for grammar programming,
which is a method of imposing systematic changes to a grammar by parametric use of transfor-
mation operators [KLV05, Läm01a, DCMS02], as opposed to grammar hacking, which entails
untraceable inline editing of the grammar at hand [Läm01b]. In fact, each of the operators that
comprise the language, is a rewriting system that transforms a term algebraic representation of
a formal grammar, according to its specification. For instance, the unfold operator replaces a
nonterminal occurrence with its definition, the renameN renames a nonterminal, the reroot op-
erator changes the starting symbol of the grammar, etc. The design of XBGF was validated by
performing a major case study involving six grammars of Java [LZ11]. It was later extended for
bidirectionality [Zay12b] and acquired several new operators by forming bidirectional pairs with
existing ones. However, grammar programming with XBGF often feels rather low level, since
it can take several transformation steps to address one issue, and the intent of using a particu-
lar operator is impossible to infer by looking at one step without considering its context. This
makes both mass maintenance of grammars with XBGF transformations, and maintenance of the
already programmed transformation scripts, more difficult than they could technically be.

We represent grammars as quadruples 〈N,T,P,S〉, where N is a finite set of nonterminal sym-
bols, T is the finite set of terminal symbols, P is the set of production rules having a form of
n ::= x, where n ∈ N is the nonterminal being defined, x is a defining algebraic expression over
terminals and nonterminals, and S⊂N is a set of starting nonterminal symbols2. We also assume
that N∩T =∅ (by treating terminals and nonterminals separately). With Pn we will denote the
subset of all production rules that define the nonterminal n ∈ N: Pn = {n ::= ei} ⊂ P.

Let us define a grammar transformation operator as a tuple τ = 〈π,ϕ〉, where π is a precon-

1 The language reference of XBGF is available at http://slps.github.io/xbgf.
2 The actual GrammarLab implementation is slightly more complex and deals with labels and markers: we exclude
all transformations and mutations concerning them for space considerations. http://grammarware.github.io/lab/
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Figure 1: Top: the eliminate operator implemented in Rascal — the implementation used in
GrammarLab is already enhanced to cover both regular execution and negotiated one [Zay14c].
Bottom: the EliminateTop grammar mutation implemented in Rascal.

dition and ϕ is the rewriting rule3. Then, a grammar transformation will be τai , where ai are its
parameters. The type and quantity of parameters differ from one operator to another: for exam-
ple, consider an introduce operator, a1 = [p1; p2; . . . ; pn] is the list of production rules that need
to be introduced into the grammar; π is asserting that all the provided production rules indeed
define one nonterminal symbol, which is not present in the grammar; and ϕ is a trivial operation
of adding all pi to P.

As can be seen from Figure 1, this formalisation maps directly to the language implemen-
tation: either the straightfoward one or the one allowing the negotiated transformation model
per [Zay14c], they just contain more details like error messages. An alternative Prolog im-
plementation is more verbose but works similarly — we save space here by displaying only
Rascal [KSV11] code.

A grammar mutation is defined differently: its precondition works not as an applicability con-
dition, but as a trigger for possible application of ϕ , thus being a classic term rewriting system
in itself. The implicit postcondition in such case is the conjunction of all negated precondi-
tions: when no rewriting rules are applicable, the mutation has successfully terminated. Being
described as general automation strategies, mutations are also allowed to be more complex, with
one step covering multiple changes (typical for normalisations). Thus, we define a grammar mu-
tation as µ = 〈{π(i)},{ϕ(i)}〉, with each π(i) being a trigger for applying the corresponding ϕ(i)

rewriting strategy. An corresponding implementation code can be found on Figure 1.
Grammar mutations are not entirely a new subject. There was a need for fully automated

grammar transformations expressed in the first grammar convergence project [LZ09], where we
deployed so called generators that exercised more automation that regular grammar transforma-
tions [Zay11]. The name “generator” was used due to the fact that they were implemented as
higher order functions, taking a grammar as an input and generating a sequence of transforma-
tion steps that would still need to be applied to it. Later it was deemed to be an implementation
detail, and many currently used mutations are implemented differently, if a more efficient algo-
rithm exists. An overview of available generators at that time can be found in [Zay10, §4.9].

3 We deliberately exclude the postcondition from all the formulae in the current paper, because we will not base any
substantial decisions on it.
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Such strategies cannot be treated as transformation operators, since effectively they need the
whole grammar to act as a parameter.

Grammar mutations in the form discussed here, were first mentioned in [Zay12b, §3] as a
possibly bidirectional, but not bijective, mapping between grammars. In [Zay12c, §3.8.1] one
can find an overview of many possible mutation algorithms. This paper is the first account of
exploring the space of possible grammar mutations systematically, by basing them on controlled
extensions of an existing operator suite. When a mutation µ is an intentionally generalised
version of the transformation operator τ , we will say that τ ` µ .

3 Intentional generalisation

We have identified four different scenarios of successful generalisation, based on the intent of the
target mutation. Mutations of Type I are trivial: they turn operators with “check that π holds, then
do ϕ” semantics into mutations with “for all cases where π holds, do ϕ” behaviour. Mutations of
Type II require additional information that can be automatically obtained by traversing the input
grammar or performing any additional computation: a “reroot to top” is an illustrative example
— we need to compute the set of top nonterminals, and then perform the usual reroot. Mutations
of Type III generalise over operators with multiple intents: for instance, factoring can be done in
many different ways, so the inference of mutations require classifying those intents and splitting
them (thus, one operator may yield several mutations). Mutations of Type IV are parametric,
they include grammar composition, slicing and other sophisticated manipulations. The following
sections go deeper into details of obtained mutations, with the emphasis of identifying use cases.

The implementation of XBGF is rigidly structured (cf. Figure 1), which allowed for systematic
semi-automated rewriting of the operator code in order to obtain the code of the corresponding
grammar mutation(s).

3.1 Mutations of Type I: trivial generalisation

The transformation operators abridge, deyaccify, distribute, eliminate, equate, fold, horizon-
tal, inline, unchain, unfold and vertical can be turned into mutations trivially: by attempting to
apply them to any nonterminal (or any production rule, depending on the expected type of argu-
ments) that is present in the grammar. For example, unfold will fail on any unused nonterminal
and on any recursively defined one, and will succeed otherwise. A more optimal definition of
these mutations is as follows.

Definition 1 (trivially generalisable mutation) Given an operator τ = 〈π,ϕ〉 parametrised with
a production rule, a production label, a nonterminal symbol or two nonterminal symbols, a triv-
ially generalisable mutation based on that operator, has the form µI = 〈{π},{ϕ}〉. �

In other words, a trivially generalisable grammar mutation performs rewriting of the grammar
for each of the components that satisfies the precondition of the base operator.

abridge `AbridgeAll: remove all reflexive chain production rules. Perform abridge(p) for all
p∈P, such that p= x ::= x, where x∈N. Such mutation has no counterpart in prior work, but it is
very reasonable: indeed, it is rarely the intent of the grammar engineer to remove some reflexive
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chain production rules while retaining others — it is more usual to commit to a different grammar
style where none are needed, which technically can still result in just one transformation step.

deyaccify ` DeyaccifyAll: remove all yaccified production rules. Perform deyaccify(x) for
all x∈N, such that Px = {x ::= e1,x ::= e2}, where e1 and e2 follow one of yaccification patterns.
A corresponding generator was proposed previously in [Zay10, §4.9] and [Zay11, §5.4].

A “yaccified” definition [Läm01a, JM01] is named after YACC [Joh75], a compiler compiler,
the old versions of which required explicitly defined recursive nonterminals — i.e., in order to
define a nonterminal x as y+, one would in fact write x ::= y and x ::= xy, because in LALR
parsers like YACC left recursion was preferred to right recursion (contrary to recursive descent
parsers, which are unable to process left recursion directly at all). The common good practice
is modern grammarware engineering is to use iteration metalanguage constructs, sometimes re-
ferred to as EBNF iteration, since introduction of closures x+ and x∗ was among the differences
between the original BNF and Extended BNF [Zay12a]. The use of metalanguage constructs is
technology-agnostic, and the compiler compiler can make its own decisions about the particular
way of implementation, and will neither crash nor have to perform any transformations behind
the scenes. However, many existing grammars [Zay14a] contain yaccified definitions, and usu-
ally the first step in any project that attempts to reuse such grammars for practical purposes, starts
with deyaccification.

distribute ` DistributeAll: globally distribute sequential composition over choices. Perform
distribute(x) for all x ∈ N, such that x ::= e1 ∈ P, where ∃e2 = y1| · · · |yk, such that e2 6= e1 and
e1≈ e2 modulo factoring. The distribution operator aggressively pushes choices outwards, and is
mostly used as a post-processing step after some other transformation that could introduce inner
choices. Grouping such steps together and asserting the absence of local choices throughout the
grammar in one sweep would be a different acceptable style of grammar manipulation.

eliminate `EliminateTop: eliminate unreachable nonterminal symbols. Perform eliminate(x)
for all x ∈ N, such that no derivations reaches x from the root. A corresponding transformation
generator was proposed in [Zay10, §4.9] and [Zay11, §5.4]. A top nonterminal is a nonterminal
that is defined but never used, and analysing and either connecting or removing top nonterminals
from a grammar is a known technique in grammar recovery [LV01, SV00]. Especially in the sit-
uations when the root is known with certainty, we can assume all other tops to be useless, since
they are unreachable from the starting symbol and are thus not a proper part of the grammar.

equate ` EquateAll: merge all identically defined nonterminals. Perform equate(x,y) for
all x ∈ N,y ∈ N, such that Px ≈ Py, if x is indistinguishable from y. No explicit counterpart in
prior work, but indeed the intent of using the equate operator is to ensure the lack of identical
nonterminals in the grammar, which is effectively covered by this mutation.

fold ` FoldMax: fold all foldable nonterminals. Perform fold(x) for all x ∈ N, such that
Px = {x ::= e} and e occurs somewhere else in the grammar. No counterpart in prior work. A
dangerous mutation that only makes sense in big grammars with complicated right hand sides of
all production rules, otherwise it will result in too many unintended foldings.

horizontal ` HorizontalAll: make all definitions horizontal. Perform horizontal(x) for all
x ∈N, for which |Px|> 1. Discussed as a transformation generator in [Zay10, §4.9] and [Zay11,
§5.4]. Grammar engineering often differentiates between horizontal [Zay10] or flat [LW01]
definitions that consist of one production rule with a top level choice, and vertical or non-flat
definitions that span over multiple production rules. Converting all production rules in P to
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one form or the other to satisfy different grammarware frameworks preferences, is a commonly
performed normalisation.

inline ` InlineMax: inline non-recursive nonterminals. Perform inline(x) for all x ∈ N that
have horizontal non-recursive definitions. All mutations that we considered above, were useful
normalisations for refinement and improvement activities (sometimes referred to as “grammar
beautification” [Zay10, Zay12b]). As we see now, this is not the only possible use for grammar
mutations. Maximal unfolding of all nonterminal symbols is more than likely to make a grammar
less readable, since it leads to overly bulky right hand sides. However, the minimal number of
nonterminals for a given grammar, is a fundamental concept, since it denotes the limits of fold-
ing/unfolding [Zhu94], and it is a useful notion for grammar based metrics [ČKM+10], possibly
related to the notion of grammatical levels [Gru71]. For smaller languages, as many DSLs are,
it should be possible to inline all nonterminals except the root, converting a grammar to a form
where |N|= 1, thus allowing applications of theorems and techniques from the formal language
theory, available only for one-nonterminal grammars, such as [JO09].

unchain ` UnchainAll: get rid of all chain production rules. Perform unchain(p) for all p ∈
P, such that p = x ::= y), where x ∈N,y ∈N and |Py|= 1. Since unchaining is a form of limited
inlining, its generalisation is an intentionally limited form of aggressive inlining. Reducing the
number of chain production rules is one of the previously known ways of increasing readability
of a grammar [LZ11].

unfold ` UnfoldMax: unfold all non-recursive nonterminals. Perform unfold(x) for all x ∈N
that have horizontal non-recursive definitions. The same effect as for InlineMax above, but
keeping the unfolded nonterminal symbols in the grammar makes undoing this mutation easier.

vertical ` VerticalAll: make all definitions vertical. Perform vertical(x) for all x ∈ N, for
which |Px|= 1 and Px = {x ::= y1| · · · |yk}. A mutation with the opposite intent of HorizontalAll
discussed above. A transformation generator with the same effect was previously proposed in
[Zay10, §4.9] and [Zay11, §5.4].

3.2 Mutations of Type II: automated generalisation

The transformation operators abstractize, appear, chain, concatT, concretize, define, inline,
lassoc, rassoc, reroot, splitT and undefine, when generalised to a mutation, require additional
information, which can still be obtained automatically by additional traversals over the gram-
mar, by pattern matching, etc. For the sake of simplicity, we define the Type II mutations with
production rules as arguments, but they are trivially defined with any other kind of argument.

Definition 2 (auto-generalised grammar mutation) Given an operator τ = 〈πp,ϕp〉 parametrised
with a production rule p, an auto-generalised mutation based on that operator, has the form
µII = 〈{ξ (p)∧πψ(p)},{ϕψ(p)}〉, where ξ is an additional constraint filtering out impossible ar-
guments, and ψ is a rewriting rule preparing them to assume the form expected by the original
precondition. �

abstractize ` RetireTs: remove all terminal symbols. For each p ∈ P, traverse its right hand
side for terminal symbols. If found, mark all of them and run abstractize(p′), where p′ is the
marked production rule. A corresponding transformation generator was used in [LZ09, §5.3],
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[Zay10, §4.9, §4.10.6.1] and [Zay11, §5.4], as well as in one of the steps toward Abstract Nor-
mal Form [Zay12c, §3.1]. The resulting grammar mutation is particularly helpful when con-
verging a concrete syntax and an abstract syntax of the same software language. While the
abstract syntax definition may have differently ordered parameters of some of its constructs, and
full convergence will require dealing them them and rearranging the structure with (algebraic)
semantic-preserving transformations, we will certainly not encounter any terminal symbols and
can thus safely employ this mutation.

appear ` InsertLayout: make layout explicit. In parsing, it is common to perform layout-
agnostic grammar manipulation and assume that the framework will insert optional layout preter-
minals between any two adjacent symbols in a context-free production rule. For layout-sensitive
manipulation, it may be sensible to encode this step explicitly: that way, for instance, some other
optimisation steps may take place before the grammar is fed to the parser generator.

chain ` ChainMixed: separate chain production rules from unchained ones. For each x ∈ N,
if |Px| > 1, then for each non-chain production rule, perform chain on it. This is an important
normalisation step for Abstract Normal Form [Zay12c, §3.1], which prepares the grammars for
automated convergence. Basically, the guided convergence algorithm expects every nonterminal
symbol to be either defined with one production rule, or with several chain production rules: this
effect can be achieved with a mutation that generalises the chain operator.

concatT ` ConcatAllT: concatenate all adjacent terminals. If there are any terminal sym-
bols following one another sequentially, concatenate them. Terminals should be either all non-
alphanumeric (the mutation would then mean the change of style in the language) or all alphanu-
meric (in which case a reasonable use case is grammar recovery [LV01, LZ11]).

concretize ` ParenthesizeAll: introduce default concrete syntax. While the problem of de-
riving the abstract syntax from the concrete syntax is relatively well studied [Wil97], the reverse
problem is far more complicated, since one abstract structure can be expressed with different
concrete syntaxes. Without diving too much into the details of this issue, we can say that it
is possible to automatically derive some kind of concrete representation by committing to ho-
moiconicity and relying on M-expressions, S-expressions, Sweet-expressions, I-expressions, G-
expressions and the like.

define ` DefineMin: provide all missing definitions. For each x ∈ N, if @p ∈ P such that
p = x ::= e, then define it as x ::= ϕ (a metasymbol for failure, empty language, parse error).
Since ϕ is a default semantics for any unknown nonterminal, since unknown nonterminals can
be neither generated nor analysed, this mutation merely completes the grammar.

inline ` InlineLazy: inline lazy (used once) nonterminals. One of the Type I mutations was
InlineMax: if we add an extra constraint to it that will make it applicable only to nontermi-
nal symbols that are used just once throughout the whole grammar, we will get a very useful
normalisation that can improve readability of automatically generated grammars and reduce the
impact that the language documentation often has on a grammar (excessive number of secondary
nonterminals introduced in order to spread the material better over the document sections). In
particular, a transformation generator with a similar effect was proposed in [Zay10, §4.9] and
[Zay11, §5.4].

lassoc ` LAssocAll, rassoc ` RAssocAll: replace all iterations by associative equivalent. A
simple iterative production rule has the form x ::= x+, while its associative counterpart looks like
x ::= xx, which can be complicated with expression labels and separators. Grammars influenced
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by top-down parsing technology, such as definite clause grammars [PW80], often use explicit
iteration constructs, which need to account for associativity when being converged [LZ09] with
differently styled definitions of the same language. The difference between lassoc and rassoc is
unnoticeable on the grammar level and is only relevant for coupled transformation of parse trees.

reroot ` Reroot2top: reroot to top symbols. In the previous section, we have introduced the
EliminateTop mutation that calculated the set of top (defined yet unused) symbols and eliminated
them. An alternative way to treat top symbols is to make them new roots. A variation of this
mutation is used for Abstract Normal Form in [Zay12c] with an additional requirement that a top
nonterminal must not be a leaf in the relation graph. This is a rational constraint since a leaf top
nonterminal defines a separated component.

splitT ` SplitAllT: split all non-alphanumeric terminals. Any nonterminals that are either
non-alphanumeric or mixed, can be split into sequences of terminals with their components.
Intentional splitting and concatenating terminal symbols is common in automated grammar re-
covery [LV01, LZ11].

undefine ` UndefineTrivial: remove trivially defined nonterminals. For each x ∈ N, if ∀p ∈
Px, if p = x ::= α or p = x ::= ϕ or p = x ::= ε , then undefine(x). This mutation has been
proposed earlier as a step in normalisation to ANF [Zay12c, §3.1].

3.3 Mutations of Type III: narrowed generalisation

One of the issues with Type II mutations is that one operator generalises to one mutation, which is
insufficient for operators that cover many similar cases. Let us recall that in [LZ09, LZ11] many
operators were supported by an underlying equivalence relationship. For example, the class of
factor-equivalence includes all differently factored but otherwise equal expressions; massage-
equivalence is based on formulae like xx∗ ≈ x+ and x? ≈ x|ε . However, equivalence is often a
symmetric relation, and only by looking at transformation arguments the direction of computa-
tion could be established. For grammar mutations, we need to virtually generate those arguments.
Hence, it is impossible to define something like MassageAll, because it would try to apply many
patterns and rewrite them in both directions, which is obviously nondeterministic, not terminat-
ing and even pointless. Instead, we narrow the patterns used in the equivalence relation, fix the
direction and define one mutation for each of those. The transformation operators that benefit
from such processing, are: iterate, factor, massage, narrow, permute, renameN, renameT
(the last two collectively called renameX for brevity), widen and yaccify. For some of them
(most notably for factor and renameX, but also for permute) the shown narrowed cases are not
exhaustive.

Definition 3 (narrowed grammar mutation) Given an operator τ = 〈πp,ϕp〉 parametrised with
a production rule p, where ϕ is a composition of multiple rewritings ϕ(i), narrowed mutations
based on that operator, have the form µ

(i)
III = 〈{ξ (i)(p)∧ π

ψ(i)(p)},{ϕ
(i)
ψ(i)(p)

}〉. Each ξ (i) is an

additional constraint filtering out impossible arguments, and ψ(i) is a rewriting rule preparing
them to assume the form expected by the original precondition. �

iterate ` · · · (3 mutations). The iterate operator is a reverse of lassoc/rassoc that we have
discussed in the previous section. The operator yields three narrowed mutations, since the un-
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derlying equivalence relation is not symmetric and allows for three rewritings: x ::= xyx � x ::=
(xy)∗x, as well as x ::= xyx � x ::= x(yx)∗ and x ::= xx � x ::= x+.

factor ` distribute: automatic factoring outwards. For each p ∈ P such that p = x ::= e,
where e contains inner choices and can be factored to the form p′ = x ::= y1| · · · |yk, then perform
factor(e,y1| · · · |yk). This strategy is already implemented and resides in the original XBGF under
the name distribute. Seeing how perfectly it fits the definition of a mutation, we must conclude
that introducing such an intricate rewriting as a transformation operator in [LZ09] was not a
correct language design decision.

factor ` Undistribute: automatic factoring inwards. For each p ∈ P, such that p = x ::=
y1| · · · |yn and yi are sequences that all share either starting or trailing nonempty elements such
that yi = s1 · · ·s jy′it1 · · · tk, then perform factor(y1| · · · |yn,s1 · · ·s j(y′1| · · · |y′n)t1 · · · tk). The existence
of a bidirectional but not bijective reverse of distribute only strengthens the point of view that
treats it as a mutation, not as a transformation operator.

massage ` · · · (2× 29 mutations). The massage operator is used for small-scale grammar
refactorings. The massage-equivalence relation is symmetric and consists of algebraic laws not
present in the trivial normalisations, such as (x+)? = x∗ or x∗x = x+ or x? = x|ε . These laws are
defined declaratively, without any preference for the direction of computation, but by singling
the laws out and fixing the direction, we get a family of twice the 29 mutations.

narrow ` · · · (5 mutations). This language-decreasing transformation operator rewrites x? to
x, x+ to x, etc, for a total of five cases. An example of the resulting five narrowed mutations is
NarrowStar2Opt that traverses the grammar in search for x∗ and rewrites each of them to x?.

permute ` · · · (6 mutations). Dealing with different permutations is a common activity in
converging grammars of various abstract syntaxes [LZ09] or in syntax directed translation with
synchronous grammars [AU69]. In natural language processing permutations can be quite com-
plicated and require discontinuous constituents (up to the point of enforcing the use of tree-
adjoining grammars), but in software languages most permutations concern the operators being
infix, prefix or postfix. This gives us six narrowed mutations. Their application is most useful in
transcompiling languages with predominantly one kind of notation. Examples include translating
from Forth to Infix Forth4 by Andrew Haley (PermutePostfix2Infix) or from REBOL to Boron5

by Karl Robillard (PermuteInfix2Prefix) and other kinds of A-C unparsing [BZ14], where one
abstract syntax of a software language can be linked to several different concrete syntaxes.

renameX ` · · · : naming conventions (2×6×5 mutations). Systematic renaming of nontermi-
nals symbols has been discussed before in the context of coupled grammar mutations [Zay12b,
§3.4] and transformation generators [Zay10, §4.9, §4.10.6.1] [Zay11, §5.4]. The same logic and
the same conventions that apply to renameN, are also applicable to renameT. There are several
different well-defined naming conventions for nonterminal symbols in current practice of gram-
marware engineering, in particular concerning multiword names. Enforcing a particular naming
convention such as making all nonterminal names uppercase or turning camelcased names into
dash-separated lowercase names, can be specified as a unidirectional grammar mutation (one for
each convention). Every convention is specified by a word separator (almost exclusively space,
dash, underscore, dot, slash or nothing) and a capitalisation policy (Capitalcase, lowercase, UP-

4 http://www.webcitation.org/6GMSwBlr4
5 http://urlan.sourceforge.net/boron/

9 / 17 Volume 65 (2014)

http://www.webcitation.org/6GMSwBlr4
http://urlan.sourceforge.net/boron/


Software Language Engineering by Intentional Rewriting

PERCASE, CamelCase and mixedCase). These together give us 30 narrowed mutations per each
renameX operator.

widen ` · · · (5 mutations). The reverse operator for narrow spawns five mutations that are
bidirectional counterparts of the five discussed above.

yaccify ` · · · (2 mutations). While it was possible to implement DeyaccifyAll as a trivially
generalised mutation, yaccification (replacing repetition with recursion) has two distinct rewrit-
ing strategies, favouring left and right recursion, respectively. Thus, we have two narrowed muta-
tions: YaccifyAllL and YaccifyAllR. This perfectly demonstrates the need for Type III mutations:
YaccifyAll would work as a Type II mutation, but its behaviour would be nondeterministic. In
the presence of parsing technologies with strong preference of left or right recursing, such a
mutation would have been practically useless.

3.4 Mutations of Type IV: parametric generalisation

The last productive group of transformation operators includes those that cannot be generalised
at all without additional information — which can still be provided by parametrising them. It is
worth noting that some of the Type III mutations become more convenient to use when moved to
Type IV. However, since it will require us to introduce more data types for representing operator
notation for Permute(X ,Y ) and RenameAllX(nc1,nc2), we keep it simple, straightforward and
automated. Further refinement of the implementation is always possible. This way, we also avoid
the discussion of whether some operators should not be joined by introducing a discriminating
argument — keeping the argument types confined to the types already found in the grammar
representation of GrammarLab was a conscious language design decision.

Definition 4 (parametric grammar mutation) Given an operator τ = 〈πp,ϕp〉 parametrised with
a production rule p, an parametrically generalised mutation based on that operator, has the form
µIV = 〈{ξ (a, p)∧πψ(a,p)},{ϕψ(a,p)}〉, where ξ is an additional constraint filtering out impossible
arguments, ψ is a rewriting rule preparing them to assume the form expected by the original
precondition, and a is an additional parameter. �

The definition is trivially extended to cover other parameter types and different number of
mutation parameters.

define ` DefineAll([pi]). Similar to top nonterminals that we have reintroduced in Subsec-
tion 3.1, we can speak of bottom nonterminals [LV01, SV00], which are used but not defined in
the grammar. This mutation effectively implements grammar composition, where one grammar
defines the nonterminal needed by the other one.

disappear ` DisappearEverywhere(e). The disappear transformation operator removes an
nillable (x? or x∗) symbol from the given production rule. A somewhat more automated version
of it would rewrite the whole grammar by making a given nillable symbol disappear from all
production rules. In practice this step can be used to express the difference between the grammar
of a software language used for parsing and another grammar used for pretty-printing [BV96].

eliminate ` SubGrammar([xi]). Similar to program slicing [Wei81], one can perform gram-
mar slicing. One of the most useful intentional slicing of a grammar is the one where the slice
includes one of the nonterminals as the new root, and the transitively closed set of all nontermi-
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nals reachable from it, with their corresponding production rules. Constructing a subgrammar
starting with the already known roots is equivalent to EliminateTop.

introduce ` importG([pi]). Introducing multiple fresh nonterminals in bulk would have been
a generalisation of the introduce operator, but such a generalisation is already present in the
original language under the name of importG. Just like distribute before, this begs for recon-
sideration of the appropriateness of treating importG as a transformation operator and not as a
mutation.

redefine ` RedefineAll([pi]). Just like redefine comprises the double effect of undefine and
define, we can infer a mutation similar to DefineAll, but the one that disregards any existing
conflicting definitions for the concerned nonterminals. Even though redefining a nonterminal
has been studied in various frameworks before [DCMS02, KLV02, LZ11], the kind of grammar
composition that RedefineAll offers, has never been explicitly considered.

undefine ` SubtractG([pi]). Similarly, we can have a mutation that “subtracts” one grammar
from the other one by undefining all nonterminals that are defined in the subtrahend. This muta-
tion can be a way to resolve the well-known problem of modular language frameworks that often
do not provide means to “exclude” a module after including it.

unite `UniteBySuffix(a). Nonterminal names often carry meaning that was introduced by the
grammar designer. One of the common grammar reengineering activities is unification of sev-
eral nonterminals by grouping them semantically (in this case, nominally): function_name,
variable_name, task_name, library_unit_name, etc6, can be all united into a name;
or MethodModifier, VariableModifier, FieldModifier, etc7, into a Modifier.
Considerable relaxation can also be achieved intentionally by using this mutation to combine all
statements or all declarations.

4 Other kinds of mutations

The following transformation operators from XBGF were not used to build mutations based on
them:

replace: in a sense, replace ` replace. This transformation operator was meant to be the last
resort in grammar programming, when a brutal change needs to be applied to a grammar. Most
safe refinements of brutal replacing are already made into other operators, and the basic rewriting
strategy is not generalisable any further.

importG: while we have seen importG in Subsection 3.4 being essentially a mutation such
that introduce ` importG, it is still feasible to treat it like a transformation operator, which can
be rewritten into an even more general mutation. One of the possibilities would be automated
grammar composition, when the choice of which grammar is imported, is made based on the
grammar at hand. Further, much more detailed, investigation of such generalisations of both
importG and DefineAll is needed before the result can be brought out to public.

The extract operator is essentially a composition of introduce and fold. It is perfectly clear

6 Example taken from the Ada grammar, extracted from ISO/IEC 8652/1995(E) [Zay14a]. A browsable version is
available at http://slps.github.io/zoo/ada/lncs-2219.html.
7 Example taken from the Java grammar, extracted from Java Language Specification [LZ11, Zay14a]. A browsable
version is available at http://slps.github.io/zoo/java/java-5-jls-read.html.
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that extract generalises into a Type III family of mutations. However, it is far beyond trivial to
propose a sensible, strongly motivated, non ad hoc list of useful extracting mutations. For exam-
ple, the algorithm of converting a context-free grammar to Chomsky normal form, is obviously
one of such extract-based mutations. However, in natural linguistics Chomsky normal forms of
ranks higher than two are also considered (CNF of rank 3 also allows for production rules of the
form a ::= bcd, etc), so we need to either propose a mutation suitable for such normalisations as
well, or provide a separate mutation for each rank.

addH, addV, removeH, removeV: the intent behind adding or removing a particular piece
to/from a grammar, is obvious and therefore not intentionally generalisable. In a parallel project,
where we have tried to apply mining techniques to the existing transformation scripts in or-
der to infer a higher level grammar transformation language Extended XBGF [Zay12c, §3.2.4],
adding and removing branches was only spotted in a couple of stable use patterns, that involved
straightforward superposition with chain or vertical — hardly any ground for generalisation to
a mutation. It is possible that some very peculiar add-based mutations exist, but so far we have
neither encountered nor needed them.

downgrade, upgrade, detour, clone, splitN: in the experience gained by previous grammar
convergence projects, we can say that these transformation operators are also highly specific and
always used once in a very limited scope. Generalisation of them to mutations seems impossible
at the moment.

inject, project: more accurate versions of injection/projection were used as Type II mutations
based on concretize and abstractize, as well as Type II and IV mutations based on appear and
disappear. Further generalisation of injection/projection is possible, but seems too idiosyncratic
to include here.

More complex mutations can be composed out of the already presented ones. Two basic com-
position schemes is possible. First, we could operate with triggers and rewriting rules directly
and combine mutations in such a way that

µ1⊕µ2 = 〈{π(1)
i },{ϕ

(1)
i }〉⊕〈{π

(2)
j },{ϕ

(2)
j }〉= 〈{π

(1)
i }∪{π

(2)
j },{ϕ

(1)
i }∪{ϕ

(2)
j }〉.

Alternatively, we could just apply one mutation to the result of the other one and get µ1 ◦ µ2.
This always guarantees termination and compatibility.

The first way could be a more efficient manner in which we can present overly scattered
Type III mutations. For example, for massage we could define a family of grouped narrowed
mutations with MassageOpt for x|ε � x? and x?|ε � x? and x?? � x?; MassageSepListLeft
for x(yx)+ � (xy)+x and x(yx)∗ � (xy)∗x MassageSepListRight for (xy)+x � x(yx)+ and
(xy)∗x � x(yx)∗ etc. Then, essentially,
MassageOpt = MassageChoice2Opt ⊕MassageChoiceOpt2Opt ⊕MassageOptOpt2Opt.

The second way of composition is preferred for specifying mutations with multiple steps,
consisting of multiple stages of normalisation. For instance, the Abstract Normal Form [Zay12c,
§3.1] needed for guided grammar convergence [Zay14b], would look like this:

ANF = RetireTs ◦ DistributeAll ◦ VerticalAll ◦ UndefineTrivial ◦ ChainMixed
◦ MassageSepListPlus2L ◦ MassageSepListStar2L ◦ Reroot2top ◦ EliminateTop

If this seems complicated, remember that each of these steps is an intentional rewriting on its
own, so each component of this definition maps directly to a mutation and to an objective
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that needs to be satisfied by the normal form. For the purposes of guided grammar conver-
gence [Zay14b], this normalisation needs to be implemented with origin tracking mechanisms
to preserve the correspondence between the nonterminals in the normalised and in the refer-
ence grammar. Still, the formula above remains the definition, and the implementation generates
bidirectional grammar transformation steps [Zay12b].

5 Dark data: a non-intentional approach

Dark data is information about failed scientific experiments [Goe07]. In this section, we will
briefly describe a previously failed attempt to design a new software language for grammar ma-
nipulation with maintainability in mind. This attempt has costed several months of work, but has
only been documented before in a technical report [Zay12c, §3.2.4].

In [LZ11], we have undertaken the biggest semi-automated grammar transformation project
known up to date. It consists of over 1600 grammar transformation operator calls, used to con-
verge six standardised grammars of different versions of the Java programming language. Such
scale raises a question of maintaining these transformation chains. We had to solve these ques-
tion ourselves during rethinking of the underlying approach when we upgraded the first version
of the project report into a bigger journal paper that required substantially deeper insights and
more universal applicability.

The first attempt to design a new language was based on analysing patterns that occurred in
those transformation scripts and defining new operators for them as (meta)syntactic sugar —
in fact, it was a vertical DSL that gave concise notation to lengthier combinations of low-level
transformation steps. The idea was that having low-level operators such as unfold, introduce
or factor is useful for understanding the underlying semantics and sharing small illustrative ex-
amples, but higher level operators are needed for advanced maintenance and evolution activities
performed on the transformation sequences themselves. For example, consider this scenario:

A ::= B C D E ; A ::= B C DF E ;
A ::= B C F E ; =⇒ A ::= G ;
A ::= G ; DF ::= D ;

DF ::= F ;
Pulling out such DF requires factoring the defining expressions of A and then extracting DF,

but since factoring is only defined on choices, we would also need to horizontalise A before and
verticalise DF after the extraction. All these steps can be combined in one parametrically defined
transformation operator which we may call exbgf:pull-out. In the Java Language Specification
convergence scenario [LZ11] we have identified 23 occurrences of possible use for exbgf:pull-
out, each one replacing three (factor ◦ extract ◦ vertical) or five (horizontal ◦ factor ◦ vertical
◦ extract ◦ vertical) XBGF transformation steps.

As a result, the line count and statement (function application) count went down consider-
ably, as one can see on Table 1: introducing many high level operators like exbgf:pull-out, has
reduced the number of atomic transformation steps that need to be defined by a grammar en-
gineer in order to achieve convergence, by 25% on average. EXBGF (Extended XBGF) was
implemented purely as a vertical DSL, which means that from the EXBGF script programmed
by a grammar engineer, an equivalent longer XBGF script is generated automatically and subse-
quently executed. Such generated XBGF also turned out to be not much less efficient than the
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jls1 jls2 jls3 jls12 jls123 r12 r123 Total
XBGF, LOC 682 6774 10721 5114 2847 1639 3082 30859
EXBGF, LOC 399 5509 7524 3835 2532 1195 2750 23744

−42% −19% −30% −25% −11% −27% −11% −23%
genXBGF, LOC 516 5851 9317 4548 2596 1331 2667 26826

−24% −14% −13% −11% −9% −19% −13% −13%
XBGF, nodes 309 3,433 5,478 2,699 1,540 786 1,606 15851
EXBGF, nodes 177 2,726 3,648 1,962 1,377 558 1,446 11894

−43% −21% −33% −27% −11% −29% −10% −25%
genXBGF, nodes 326 3,502 5,576 2,726 1,542 798 1,610 16080

+6% +2% +2% +1% +0.1% +2% +0.3% +1%
XBGF, steps 67 387 544 290 111 77 135 1611
EXBGF, steps 42 275 398 214 98 50 120 1197
...pure EXBGF 27 104 162 80 30 34 44
...just XBGF 15 171 236 134 68 16 76

−37% −29% −27% −26% −12% −35% −11% −26%
genXBGF, steps 73 390 555 296 112 83 139 1648

+9% +1% +2% +2% +1% +8% +2% +2%

Table 1: Size measurements of the Java grammar convergence case study, done in XBGF and in
EXBGF. In the table, XBGF refers to the original transformation scripts, EXBGF to the transfor-
mations in Extended XBGF, genXBGF measures XBGF scripts generated from EXBGF. LOC
means lines of code, calculated with wc -l on pretty-printed XML; nodes represent the number
of nodes in the XML tree, calculated by XPath; steps are nodes that correspond to transformation
operators and not to their arguments. Percentages are calculated against the XBGF scripts of the
original study.

manually coded XBGF: the difference was within 4%.
Unfortunately, the claims about boosting readability and comprehensibility of transformation

scripts, were never realised. The main problems were:

• the new operators were not orthogonal (patterns tended to overlap) and did not form a
uniform system; this led to them having less predictable behaviour, being not trivial to
learn and impossible to deterministically automate migration of low-level scripts to the
new language;

• many XBGF operators were already semantically refined versions of their more brutal
counterparts (e.g., folding is a very special case of replacement), and from the language
engineering point of view, it was unclear where to make the cut: for instance, should
redefine be a part of XBGF and pose additional semantic constraints or should it be a part
of EXBGF and be a straightforward superposition of undefine and define?;

• EXBGF operators were defined statically — only the instantiation of the EXBGF operator
could see the input grammar, while the semantics of the EXBGF operator itself has to
be defined only in terms of its parameters; the consequence was that operators such as
distribute that had a high- level feel, were impossible to specify as EXBGF operators;
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Beside all of the above reasons, we faced a serious threat to validity since the new language
was basically a result of applying clone detection techniques to one case study, and there was no
other case study of a comparable size to validate and calibrate the findings.

The interested readers are redirected to the open source repository of the Software Language
Processing Suite [ZLS+14] where all the necessary data is already deposited as http://github.
com/grammarware/slps/tree/master/topics/convergence/java.

6 Conclusions

If any programmable grammar transformation is an application of an appropriately parametrised
transformation operator, then a grammar mutation is an application of a well-understood rewrit-
ing algorithm which can be automated: systematically renaming all nonterminals or fetching a
subgrammar can serve as examples of grammar mutations. Effectively, the whole input grammar
becomes a parameter. Grammar mutations can be used to improve automation of transformation
scenarios by generating a part of the required transformation chain automatically, and they are
also useful in normalisations.

In this paper, we have analysed XBGF [LZ09, LZ11], a language consisting of 55 transforma-
tion operators, in the spirit of intentional software [SCC06], and classified 12 operators as Type I,
15 operators as Type II, 12 operators as Type III and 7 operators as Type IV. In this process 36
operators were used once, 5 were used twice in different contexts and 14 were left unused and
claimed nongeneralisable. Since every operator of Types I, II and IV gives us one mutation, but
each Type III operator spawns 2–58 narrowed mutations, we ended up inferring 235 elementary
grammar mutations. All of them were briefly introduced on the pages of the paper with claims
concerning their use case scenarios in previously published work by grammar engineers. Yet
only 42 of them have been explicitly studied before. We have identified two operators (importG
and distribute) that are, in fact, grammar mutations, which partially explains why they resisted
straightforward bidirectionalisation in [Zay12b]. The remaining 191 mutations are ready to be
used and to be investigated further. The rules for composing elementary mutations into more
complicated normalisations, were also included in Section 4.

The intentional rewriting schemes presented here, are not limited to bare formalisations. Meta-
programming techniques helped us to infer the implementations of all mutations from the im-
plementations of corresponding operators, in an automated fashion with the unavoidable gaps
(the ξ and ψ in the formulae) programmed manually. Nevertheless, it took considerably less ef-
fort than usually expected under such circumstances, and provided stronger guarantees about the
completeness and orthogonality of the designed language. These guarantees rely on the source
language, which in our case survived prior validation by large case studies; by comparison to
previously existing languages in the same domain; by bidirectionalisation; and by building a
negotiated framework on top of it [LZ11, Zay12b, Zay14c].

Currently the obtained set of grammar mutations is being actively used in maintenance and
reengineering of grammars from the Grammar Zoo, a repository containing 550+ syntax def-
initions, AST specifications, metamodels, data schemata, etc. Further research on grammar
mutation will include composition of practical complex mutations from the available elemen-
tary ones and possibly incorporating grammar mutations and grammar transformations alike in
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one uniform grammar manipulation language. After intensive testing and documentation, both
transformation and mutations suites will be added to Rascal language workbench [KSV11].

From this case study it is not yet clear whether the “`” operation on its own can be generalised
as a higher order combinator. It is also not apparent whether the four types of grammar mutations
that we have identified here, were feasible to infer automatically in some way, possibly by use of
genetic algorithms. We reserve bigger issues like these to future work, as well as adjacent topics
like “co-generalisation” of test sets.

The global concept of automated software language engineering also requires more scrupu-
lous investigation. It remains to be seen whether any given software language can be generalised
systematically in the same fashion. (Can we infer C from Assembly and C++ from C? Would in-
ferred C++ as “C syntax with the OOP intention” be different from the real C++? In what way?).
In particular, within this case study we have overcome the fundamental limitations of transfor-
mational design [Voe01] by committing to a semi-automated (and not fully automatic) process
controlled by a human expert performing classification of operators and providing additional
information. This case study demonstrates the viability of the method, but not its limits.
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