
MMMDE: Workshop on
Mathematical Models for Model-Driven Engineering

http://mmmde.github.io
Workshop Proposal

(Read MMMDE as “triple em dee e”)

Zinovy Diskin∗, Rick Salay†, Bernhard Schätz‡, Vadim Zaytsev§
∗Department of Computing and Software, McMaster University, Canada,

∗Department of Electrical and Computer Engineering, the University of Waterloo, Canada,
†Department of Computer Science, University of Toronto, Canada,
‡Institut für Informatik, Technische Universität München, Germany,

‡Software & Systems Engineering Department, fortiss GmbH, Germany,
§Instituut voor Informatica, FNWI, Universiteit van Amsterdam, The Netherlands,

∗diskinz@mcmaster.ca, †rsalay@cs.toronto.edu, †schaetz@informatik.tu-muenchen.de, ‡vadim@grammarware.net

Abstract—Software engineering (SE) strives to learn from
matured engineering disciplines, such as mechanical and elec-
trical engineering (below physical engineering, PE), and MDE
is an essential step in this direction. Mathematical models
are fundamental for PE, but should it be so for SE? What
are similarities and differences in the development and use of
mathematical models in SE vs. PE? How can SE and MDE benefit
from a better understanding of these similarities and differences?
These questions become even more challenging when we recognize
that mathematical modelling and formalisation are not identical
(although closely related), and the abundance of formal models
in SE may actually hide the lack of mathematical models with
all its negative (but perhaps negligible?) consequences.

Questions above are seldom discussed in the MDE literature,
but we believe they deserve a special attention. The MMMDE
Workshop aims at gathering together MDE experts who are
concerned with developing mathematical foundations for MDE,
understanding the role of mathematical modelling in engineering
in general and SE in particular, and with relating these general
thoughts to practical MDE problems. We want to “test the
waters”, and try to solidify broadly formulated concerns outlined
above into several well-focused research questions or directions.
See http://mmmde.github.io/ for details.

I. OBJECTIVES AND SCOPE

A. Motivation and Scope

Software engineering (SE) strives to learn from lessons
of matured engineering disciplines, such as mechanical and
electrical engineering (later physical engineering, PE), and
MDE is a bold step in this direction. Mathematical models
are fundamental for PE, but does it hold for SE as well?
What are similarities and differences in the development and
use of mathematical models in SE as opposed to PE? How
can SE and MDE benefit from a better understanding of
these similarities and differences? And how could we reduce
the differences when it is really needed? These are general
questions underlying the idea of MMMDE. Below we provide
a more detailed “questioner” for the workshop participants.

Our first observation is that mathematical modelling is a

commonplace practice in PE, whereas SE can seemingly sur-
vive without mathematical models. Indeed, building a bridge
or a car without an a priori analysis would be too costly,
and hence their mathematical modeling is a must. In contrast,
testing and debugging can replace modelling, analysis and
other mathematical means of providing correct-by-construction
software. Then the question arises: what a model should really
provide to be accepted and used in SE?

The second observation is that PE has carefully developed
families of models bridging the (enormous) gap between
engineering thinking and intuition on the one side, and mathe-
matical formalisms on the other. A pendulum, a mass hanging
from a spring, an RCL-contour, or the entire electrohydraulic
analogy are simple physical models easily manageable by an
average PE-engineer, but each of them encapsulates quite a
bit of the underlying mathematics and formalities. Moreover,
these simple models are easily composable into networks
that can be analysed in standard ways. We have somewhat
similar “physical” models bridging the gap in SE too: finite
state machines, pushdown automata, Petri nets, Lindenmayer
systems, Thue rewriting systems, control flow and data flow
nets, and also class diagrams, ER-diagrams, statecharts and
message sequence charts constitute the “golden modelling
fund” of SE.

There are, however, essential differences. Some of the SE-
models above are indeed engineering interfaces to the underly-
ing mathematics, others still lack an agreed formal semantics
and often exist in many different versions. Composability of
different models can also be an issue. Actually SE models are
often quite “asocial” and isolated: deep work on behaviour
modelling done with Petri nets is not related to deep work
on behaviour modelling done with statecharts, the same for
structural modelling with ER-diagrams, class diagrams and
ontologies. In general, an experienced modeller could easily
find a pair of popular formalisms intended for modeling of
basically the same domain, but their close relationships are
rarely explicated in the literature. Models in PE are integrated
into “forests”, whereas models in SE are isolated trees. Even

http://mmmde.github.io
mailto:diskinz@mcmaster.ca
mailto:rsalay@cs.toronto.edu
mailto:schaetz@informatik.tu-muenchen.de
mailto:vadim@grammarware.net


worse is that the isolationism of models gives rise to the
isolationism of the respective communities, and the problem
becomes unmanageable.

The model isolationism above could be called horizontal.
Yet another concern is the vertical model isolationism, that is,
a discrete jump rather than continuously changing the level of
abstraction of SE-models. Indeed, in PE, the transition from the
engineering domain to its formalisation is mediated by a whole
chain of models provided by different disciplines: from Engi-
neering theories in Mechanics/Electricity to General Physics
to Theoretical Physics to Mathematical Physics (only here
we are in the realm of mathematics) to Numerical Methods.
The opposite direction is also alive and active, when theorists
use mathematical instruments to build models to be used by
applied specialists, who in turn use their own instruments to
build reality-geared tools for the practitioners. It appears that
a typical MDE chain is shorter and seemingly more primitive:
from the engineering domain to a model to its formalisation.

Our third observation is that discrete domains (the main
subject matter of SE, if we forget about cyber-physical sys-
tems) are much better amenable to formalisation than contin-
uous ones (in PE); moreover, in design models, the object to
be formalised (code) is itself a formal object. This may lead
to an abundance of formal models in a typical SE process, but
formal models are not necessarily mathematical models. An
assembly program or a chunk of byte code are formal objects,
but they can hardly be considered mathematical objects if
their semantics is neither well understood nor defined. In a
sense, the highly nontrivial activity of reverse engineering can
be seen as a transition from the formal to the mathematical
world. On the other hand, mathematical but semiformal models
are widely used in PE. Of course, mathematical models are
often themselves formal, but the benefits they provide often
go beyond formalisation as such: specification and design
patterns, consistent conceptual frameworks and terminological
and notational frameworks based on them, ways of thinking
about and understanding the domain are typical implications
of mathematical rather than just formal modelling. The dif-
ferences between mathematical and formal are not always
well understood in MDE; the latter often lacks mathematical
models but the problem is not recognised as mathematical
models are substituted by formal ones. Particularly, the lack
of mathematical models in the modelling chain contributes to
the vertical isolationism described above.

The fuzziness (not to say obscurity) of general foundations
(or the lack of them) for mathematical modelling in SE
hinders solution of multiple small concrete problems. [ZD: the
phrasing should be reworked] Can we evaluate the quality and
usefulness of formal models by some semi-formal criteria in
order to say beforehand whether a newly proposed formalism
has any potential profitable use, or is just of pure academic
interest? What patterns can we detect in software artefacts,
models, mappings and processes, and how can we improve and
reuse them? How can the arrow thinking of category theory
be adapted as a useful instrument easy enough to apply for an
average CS/SE/MDE researcher? We think that approaching
these concrete problems needs greater clarity in understanding
the interaction of mathematical modelling and SE than we have
today — hence, this workshop.

B. Objectives and the Intended Audience

Questions above are seldom discussed in the MDE lit-
erature, but we believe they deserve a special attention and
discussion. The MMMDE Workshop aims at gathering to-
gether MDE experts who are concerned with developing
mathematical foundations for MDE, understanding the role of
mathematical modelling in engineering in general and SE in
particular, and with relating these general thoughts to practical
MDE problems. We want to “test the waters” and try to solidify
broadly formulated concerns above into several well-focused
research questions or directions, and make them accessible
top the community via a publication. Perhaps, we could
continue the workshop with the next edition of MoDELS in a
more traditional setting with paper submission and reviewing
process.

The intended audience is assumed encompassing three
main groups.

1) MDE researchers and practitioners with an affinity to
mathematical and formal methods.

2) Applied mathematicians or computer scientists apply-
ing (or wishing to apply) their research skills to MDE
and having trouble in bridging the conceptual gap.

3) SE/MDE practitioners who seek help in mathematical
techniques but do not want to pursue mastery in the
underlying theories.

C. Relevance and context

A similarly focused workshop was organised in summer
2014 for the Network for Engineering of Complex Software-
Intensive Systems for Automotive Systems (NECSIS)1, which
encompasses eight research institutions across Canada and
three industrial partners (GM Canada, IBM Canada, and Ma-
lina Software). The workshop was organized by Zinovy Diskin
with an active participation of Bran Selic and Tom Maibaum.
It turned out successful and seemingly deserving its extension
beyond NECSIS, ultimately leading to the present proposal.

There exist several conferences primarily devoted to appli-
cations of formal methods to computer science and software
engineering: FM, IFM, TASE, ICFEM, SEFM, FSEN; and
some that focus on formal proofs, verification and validation:
TAP, CAV, TACAS, SPIN, ISSTA. Normally, however, these
forums do not specially distinguish between mathematical and
formal models, and do not specially address the interaction
of mathematical modelling and engineering, which we think
is important for MDE. There has been another similarly
themed edition of SFM (School on Formal Methods for the
Design of Computer, Communication and Software Systems)
which led to publishing “Formal Methods for Model-Driven
Engineering” in 2012 [1].

We provide an illustrative list of papers that address the
problems similar or close to those in the focus of the workshop
(of course, the list is in no way comprehensive):

• the use of specification patterns in MDE [4], [9]

• assigning formal semantics to MDE processes and
artefacts [8], [10], [11], [13]

1http://www.apc-pac.ca/About-Renseignements/Project-Project eng.asp?
ID=6

http://www.apc-pac.ca/About-Renseignements/Project-Project_eng.asp?ID=6
http://www.apc-pac.ca/About-Renseignements/Project-Project_eng.asp?ID=6


• verifying model transformations and proving their
properties [3], [14]

• using abstract approaches to find and model similari-
ties in methods and techniques [15], [16]

• using category theory in MDE [5]

• integrating formal methods with MDE [6]

• systematic reviews on methods developed in the for-
mal community with their usefulness for software
engineers [7], [12]

• similarity and differences between mathematical mod-
elling and programming [2]

II. ORGANISATION DETAILS

A. Organisers

Zinovy Diskin is Senior Research Scientist with NECSIS
(see the beginning of Section C above). He is cross-appointed
as Research Associate with McMaster and the University
of Waterloo. His area of expertise is mathematical models
for MDE, particularly, metamodelling, multimodelling and
model management. He worked as a mechanical engineer and
database designer in Latvia, business analyst and consultant
in the US, and as a researcher and mentor in Canada. He
has served in the PCs of MoDELS14, ECMFA14–13, SLE14,
MODELSWARD14–13, BX14–12, and is an external reviewer
for SoSyM, FAOC, SOCP, DKE, MSCS and several other
journals. In summer 2014, he organised a one-day NECSIS
workshop on MMMDE.

Bernhard Schätz received his Ph.D. and Habilitation de-
gree in Informatics from the Technische Unversität München.
At the fortiss Transfer Institute associated with the Technische
Universität München, he leads the research department “Soft-
ware & Systems Engineering” with the fields of Analysis and
Design of Dependable Systems, Optimised Design Space Ex-
ploration, Model-Based Engineering Tools, with Smart Grid,
Automotive, and Automation as fields of application. Besides
his scientific activities, he is Lecturer at the Technische Un-
versität München, co-founder and member of the advisory
board of the Validas AG, and works as a consultant (including
BMW, Bosch, Eurocopter) in the field of Software and Systems
Engineering.

Vadim Zaytsev is a software language engineer with
background in applied mathematics and interest in bridging
technological spaces, software artefact quality, transforma-
tional techniques and grammars in a broad sense; creator and
maintainer of the Grammar Zoo, http://slebok.github.io/zoo;
OOPSLE workshop co-organiser (2013–15); Programme Chair
at WCN (2011–12) and SATToSE (2014); Tool Track Chair
at WCRE (2013); Hackathon Chair at SoTeSoLa (2012) and
SATToSE (2013); Publicity or Social Media Chair at STAF
(2015), MoDELS (2013), SLE (2011), GTTSE (2009–2015);
weekly PEM Colloquium organiser (2012–13); PC member
for GTTSE (2015), SATToSE (2015), ICSME ERA (2015),
SANER ERA (2015), CSMR-WCRE ERA (2014), DADA
(2014), SCAM (2010–15), LDTA (2012), SQM (2012–15),
DYLA (2010), WCN (2011–14), ACM SRC (2013), XM
(2013–14); an external reviewer for 20+ other venues.

B. Programme Committee

The programme committee will be composed (if the work-
shop is accepted) from several experts with whom we have
already discussed the ideas underlying the workshop. This list
includes Alfonso Pierantonio (L’Aquila), Antonio Vallecillo
(Málaga), Bran Selic (Malina Software), Harald König (Han-
nover), Jacques Carette (McMaster), Jürgen Dingel (Queen’s),
Krzysztof Czarnecki (Waterloo), Martin Gogolla (Bremen),
Perdita Stevens (Edinburgh), Ralf Lämmel (Koblenz-Landau),
and Richard Paige (York). Several members of this list com-
bine academic and industrial experience, and can thus provide
an objective and multidimensional consideration of the subject.
The role of the programme committee will be to help to
distil an efficient and attractive programme, to disseminate
information about the workshop, and to facilitate participation.

Possible Merge. Our main motivation for taking initiative
in organising this workshop is that there is no similar event,
but there should be. In case this proposal is assessed as
uninteresting, we would rather not merge with an unrelated
workshop for size considerations.

III. WORKSHOP FORMAT

We intend to run the workshop in the following format. The
first half of the workshop (before lunch) will consists of a 45
min keynote followed by 4–5 interactive 0.5 hour invited talks.
We are proud to announce that Tom Maibaum has confirmed
his willingness to deliver a keynote if the workshop is accepted.
The other speakers will be recruited from the PC list above
depending on time and other constraints (our potential speakers
may be involved in other workshops, and time clashes are
possible), or by suggestions from the PC members. We intend
to assign each prospective speaker some mild requirements on
what topic we would like her/him to address.

The second half of the workshop (after lunch) will feature
two panels followed by a conclusive general discussion.

• Panel 1: “What is bad with a bad mathematical
model?”

• Panel 2: “From trees to forests: How to correct asocial
life of models and modeling communities?”

The PC also provides us with a pool of panelists, again
depending on time constraints.

Equipment needed: the classic academic setup with a
whiteboard/chalkboard; a beamer; a microphone/sound system.

http://slebok.github.io/zoo


REFERENCES

[1] M. Bernardo, V. Cortellessa, and A. Pierantonio, Eds., Formal Methods
for Model-Driven Engineering. 12th International School on Formal
Methods for the Design of Computer, Communication, and Soft-
ware Systems, SFM 2012. Advanced Lectures, ser. LNCS, vol. 7320.
Springer, 2012.

[2] D. M. Berry, “The Essential Similarity and Differences Between Math-
ematical Modeling and Programming,” Science of Computer Program-
ming, vol. 78, no. 9, pp. 1208–1211, 2013.

[3] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of ATL
Transformations Using Transformation Models and Model Finders,”
in Proceedings of the 14th International Conference on Formal En-
gineering Methods: Formal Methods and Software Engineering, ser.
ICFEM’12. Springer, 2012, pp. 198–213.

[4] Z. Diskin, S. Kokaly, and T. Maibaum, “Mapping-Aware Megamodel-
ing: Design Patterns and Laws,” in Proceedings of the 6th International
Conference on Software Language Engineering, ser. LNCS, M. Erwig,
R. F. Paige, and E. Van Wyk, Eds., vol. 8225. Springer, 2013, pp.
322–343.

[5] Z. Diskin and T. S. E. Maibaum, “Category Theory and Model-Driven
Engineering: From Formal Semantics to Design Patterns and Beyond,”
in Proceedings of the 7th Workshop on Applied and Computational
Category Theory, ACCAT 2012, ser. EPTCS, U. Golas and T. Soboll,
Eds., vol. 93, 2012, pp. 1–21.

[6] A. Gargantini, E. Riccobene, and P. Scandurra, “Integrating formal
methods with model-driven engineering,” in Fourth International Con-
ference on Software Engineering Advances, ICSEA 2009, Sep. 2009,
pp. 86–92.

[7] C. A. Gonzlez and J. Cabot, “Formal Verification of Static Software
Models in MDE: A Systematic Review,” Information and Software
Technology, vol. 56, no. 8, pp. 821–838, 2014.

[8] E. Guerra and J. de Lara, “An Algebraic Semantics for QVT-Relations
Check-only Transformations,” Fundamenta Informaticae, vol. 114,
no. 1, pp. 73–101, 2012.

[9] E. Guerra, J. de Lara, and F. Orejas, “Inter-modelling with Patterns,”
Software and System Modeling, vol. 12, no. 1, pp. 145–174, 2013.

[10] L. Hamann and M. Gogolla, “Endogenous Metamodeling Semantics for
Structural UML 2 Concepts,” in Proceedings of the 16th International
Conference on Model-Driven Engineering Languages and Systems, ser.
LNCS, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke,
Eds., vol. 8107. Springer, 2013, pp. 488–504.

[11] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Szti-
panovits, “Specification of Cyber-Physical Components with Formal
Semantics — Integration and Composition,” in Proceedings of the 16th
International Conference on Model-Driven Engineering Languages and
Systems, ser. LNCS, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and
P. J. Clarke, Eds., vol. 8107. Springer, 2013, pp. 471–487.

[12] A. Stevenson and J. R. Cordy, “A Survey of Grammatical Inference in
Software Engineering,” Science of Computer Programming, vol. 96, pp.
444–459, 2014.

[13] H. Störrle, “Semantics and Verification of Data Flow in UML 2.0
Activities,” ENTCS, vol. 127, no. 4, pp. 35–52, 2005.

[14] J. Troya and A. Vallecillo, “A Rewriting Logic Semantics for ATL,”
Journal of Object Technology, vol. 10, pp. 5:1–29, 2011. [Online].
Available: http://www.jot.fm/contents/issue 2011 01/article5.html

[15] V. Zaytsev, “Formal Foundations for Semi-parsing,” in Proceedings
of the IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering, Early Research Achievements Track, CSMR-
WCRE 2014 ERA, S. Demeyer, D. Binkley, and F. Ricca, Eds. IEEE,
Feb. 2014, pp. 313–317.

[16] V. Zaytsev and A. H. Bagge, “Parsing in a Broad Sense,” in Proceedings
of the 17th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2014), ser. LNCS, J. Dingel, W. Schulte,
I. Ramos, S. Abrahão, and E. Insfran, Eds., vol. 8767. Springer, Oct.
2014, pp. 50–67.

APPENDIX A
CALL FOR PARTICIPATION (DRAFT)

MDE has reached a certain level of maturity, but still
seems lacking a sound underlying foundational framework
based on mathematics. Creation of such a framework needs
mathematical models of modelling itself and, perhaps, some
rethinking of the role and nature of software models (as it
often happens when mathematics is applied). We need a better
understanding of that mysterious process that converts the ever
changing and contra-formal real world into its semi-formal
models later transformed into formal models and finally to
code.

The value and role of modelling are well understood
in matured engineering disciplines such as mechanical and
electrical engineering (MEE), but the case of software engi-
neering (SE) is dramatically different. In MEE, mathematical
modelling is a must, as building a bridge or a car without
an a priori analysis would be too costly. In contrast, SE can
live without mathematical models, which may create problems,
even significant ones, but is not, in general, a life-threatening
issue for SE: testing and debugging can replace correct-by-
construction modelling and analysis. Then the question arises
what a model should really provide to be accepted and used
by software engineers or by SE-researchers.

Another important distinction between MEE and SE is that
discrete domains are much better amenable to formalisation
than continuous ones, and, in design models, the object to
be formalised (code) is itself a formal object. This may lead
to an abundance of formal models in a typical SE process,
but formal models are not necessary mathematical models!
An assembly program or byte code are formal objects, but
they can hardly be considered mathematical objects if their
semantics is not well understood. In a sense, the highly
non-trivial activity of reverse engineering can be seen as a
transition from formal to mathematical. On the other hand,
mathematical but semi-formal models are widely used in MEE.
Of course, mathematical models are often themselves formal,
but the benefits they provide often go beyond formalisation as
such: specification and design patterns, consistent conceptual
frameworks and based on them terminological and notational
frameworks, ways of thinking about and understanding the
domain are typical implications of mathematical rather than
just formal modelling. The differences between mathematical
and formal are not always well understood in MDE; the
latter often lacks mathematical models but the problem is not
recognised as mathematical models are substituted by formal
ones.

Questions above are seldom discussed in the MDE litera-
ture, but we believe deserve a special attention and discussion.
The MMMDE Workshop aims at gathering together MDE
experts who are concerned with developing mathematical
foundations for MDE, and are willing to share their thoughts
about the issue. The first half of the workshop will consist of
several invited presentations and the second half will feature
two panels and a general discussion.

[NB: We plan to extend the CFP with some ideas and
details from the Section A of the Proposal.]

http://www.jot.fm/contents/issue_2011_01/article5.html

