
Language Design and Implementation
for the Domain of Coding Conventions

Boryana Goncharenko
University of Amsterdam, The Netherlands

boryana.goncharenko@gmail.com

Vadim Zaytsev
Raincode, Belgium

University of Amsterdam, The Netherlands
vadim@grammarware.net

Abstract
Coding conventions are lexical, syntactic or semantic restric-
tions enforced on top of a software language for the sake of
consistency within the source base. Specifying coding con-
ventions is currently an open problem in software language
engineering, addressed in practice by resorting to natural
language descriptions which complicate conformance veri-
fication. In this paper we present an endeavour to solve this
problem for the case of CSS — a ubiquitous software lan-
guage used for specifying appearance of hypertextual con-
tent separately from the content itself. The paper contains the
results of domain analysis, a short report on an empirically
obtained catalogue of 143 unique CSS coding conventions,
the domain-specific ontology for the domain of detecting vi-
olations, the design of CssCoco, a language for expressing
coding conventions of CSS, as well as a description of the
tool we developed to detect violations of conventions speci-
fied in this DSL.

Categories and Subject Descriptors D.3.0 [Programming
languages]: General

Keywords conventions; software language design

1. Introduction
Coding conventions have probably been used almost as long
as programming languages. They can be viewed as a pallia-
tive on the way to design a proper language [62], or as lin-
guistic constructs that cover shortcomings of the base lan-
guage [79], or as guidelines for increased maintainability
and knowledge propagation [72, 83]. For mainstream soft-
ware languages for object-oriented programming and design
there is substantial work on naming conventions [11, 12],

Copyright © ACM, 2016. This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of the Proceedings of the 2016
ACM SIGPLAN International Conference on Software Language Engineering, SLE’16, Amsterdam, The Netherlands,
http://doi.acm.org/10.1145/2997364.2997386.

Copyright © ACM . . .

calling conventions [7, 64], modelling conventions [51, 79].
We join this trend by contributing our findings about con-
ventions used in CSS stylesheets.

There is a shortage of research on CSS — and not just in
the SLE context. In the related work section below (§ 3.1)
we seek, describe and classify all papers ever written about
CSS, 41 in total. The shortage of CSS language ecosystem
research alone could serve as a reason for our venture, and
combined with the widespread use of this technology it
becomes an indispensability.

After more detailed motivation for this project and estab-
lishing its relevance in § 2 and analysing whatever related
work is available in § 3, we will proceed with § 4 explaining
our domain analysis. Having obtained enough knowledge
of the domain, we have performed top-down domain spe-
cific software language design, going through ontology as
a domain model (§ 5); abstract syntax as an implementation
model (§ 6); concrete syntax as an interface intended for lan-
guage users; and developed a proof of concept (§ 7). In § 8
we will conclude the paper and discuss some afterthoughts.

Crucial information about these components and their
implementation is shared in this paper, but the details are left
to the supplement available as http://dx.doi.org/10.6084/

m9.figshare.3085831.v3. The accompanying command line
tool and the Sublime Text plugin were excluded from the
artefact evaluation due to the conflict of interest (the last co-
author co-chairing the AEC).

2. Motivation and Relevance
To establish whether dedicating any research effort to coding
conventions in CSS is sensible, we formulate and substanti-
ate three claims.

Claim 1: People use coding conventions.
Using plain internet search engines such as Google

Search to show existence/prevalence is unreliable due to
their personalising optimisation strategies. Search engines
maintain personalised information bubbles [76] that display
content to the users that they are likely to like and agree
with. The scientifically well-founded and engineered Private
WebSearch plugin by Saint-Jean et al. [76] does not seem

http://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://dx.doi.org/10.6084/m9.figshare.3085831.v3

to be available any more. According to the Private Search
Engine List1 comparative analysis, its reasonable contempo-
rary substitute that aggregates results acquired anonymously
from several engines based on ratings of Web of Trust, is
Privatelee2.

Searching for "coding convention" on Privatelee report-
edly yields 87,338 hits. To gain more trust in these results,
we have analysed the first 100 relevant links, skipping over
duplicate results, general discussions and pages about con-
ventions in data encoding, as well as a few out of scope false
positives. As can be seen in the left column of Figure 1, there
is a fair presence of many mainstream and some domain-
specific languages. Each search result was checked manually
and found to be either devoted to the importance of coding
conventions, or — very occasionally — about the harmful
effect existing conventions have on software. The raw data
can be inspected in Appendix A.

Claim 2: There are coding conventions in CSS.
Since we now know which languages tend to be discussed

in the context of coding conventions, we can investigate
them further by collecting the number of search results of
queries consisting of "coding convention" and the name of
the language (or a list of related alternatives). We also add
top 50 languages from the well-known TIOBE list. To es-
tablish a threshold of falsifiability, we apply the Potato Cri-
terion: “potato” is not a software language but is a word
occasionally used in examples, so we did the same search
for “potato” and filtered out the languages that scored lower
than its score of 997 pages found. As can be seen in the right
column of Figure 1, SQL turns out to be the most popular
focus of attention with 75,102 results (mostly because con-
ventions of C#, PHP and other languages include guidelines
for embedded SQL). Perl takes the second place, again with
the help of its influential language design decisions (many
guidelines include words like “perl-like” or “perl-style”).
Fortran with 34,701 is on the third place, closely followed
by CSS with 33,602 which leaves HTML, VB, Java, PHP,
JavaScript, C++ and other languages far behind. The data
with proof links is included in Appendix B.

Claim 3: Maintenance on pure CSS sheets is still being
performed.

CSS 3 [14] added many new features to the language,
but practitioners often rely on even more powerful exten-
sions and alternatives (called “preprocessors” by an estab-
lished misnomer tradition) such as SASS [13], LESS [80]
and Stylus [39] that support variables and other well-sought
functionalities. If most CSS is generated from higher level
specifications, any conventions it might have, are irrelevant.

We use GitHub, which is currently with 10 million users
and 24 million repositories the largest code host in the
world [30]. Using BigQuery3 to access GitHub’s public

1 Private Search Engine, http://www.privatesearchengine.com
2 Privatelee, https://privatelee.com
3 Google BigQuery, http://bigquery.cloud.google.com

C++
Java
PHP

JavaScript
.NET
Fortran

CSS
HTML
ObjC

Python
Ruby
Basic
Flex
Lisp

Matlab
ML

Paradox
R

Scala
SQL
Stat
Rust

SQL
Perl

Fortran
CSS

HTML
VB
Java
PHP
C++

JavaScript
bash
ObjC

Python
Matlab

C#
ABAP
Scala
Lisp

Groovy
Ruby
Ada

COBOL
Lua
Dart

Prolog
Rust

Figure 1. On the left, the word cloud of the first 100 related
results for Privatelee search for coding conventions. Lan-
guages are understood broadly: “C++” includes C, “ObjC”
includes both Swift and Objective C, “.NET” covers XAML.
On the right, the word cloud of the number of hits reported
by Privatelee for coding conventions per language, for all
languages that scored higher than a potato.

dataset, we find 2,331,864 public repositories that have been
updated in the period of January to April 2015. Disregard-
ing 253,611 (10.9%) of them because those have become
private or were deleted by the time of our investigation, and
41,274 (1.8%) more because those were too large to process
without significant effort, we looked deeper in the remaining
repositories for commits that did any maintenance on CSS.
In total we analysed 2,282,788 commits, of which more than
half (1,340,217, or 58.7%) involved only .css files and the
remaining 41.3% included preprocessor maintenance (on
.scss, .sass, .less, .hss or .styl files).

We conclude that coding conventions are an attractive
topic for practitioners, who still perform significant mainte-
nance activities on handcrafted CSS specifications and thus
care how they look and to which conventions they con-
form. The existence of recommended coding conventions

https://dx.doi.org/10.6084/m9.figshare.3085831.v3
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://www.privatesearchengine.com
https://privatelee.com
http://bigquery.cloud.google.com

for most popularly used languages and active discussions
around them establish that need as well.

3. Related Work
Given the context of the software language engineering con-
ference, we omit any explicit links to the related body of
knowledge on domain specific language design: there are
many books and papers on that topic, and most of them are
universally well known in the community. We do, however,
feel the need to position our project and contributions in the
context of two other research directions: CSS and coding
conventions.

3.1 Cascading Style Sheets
CSS is found reliably useful by forward engineers of web
content. However, it is surprisingly scarcely covered by ex-
isting research. We could not resist the temptation to refer
to all published papers on the subject and then focus on the
highlights. Appendix C contains the list of papers with ex-
tended bibliographical information such as DOI links.

To collect paper candidates, we used DBLP, which cov-
ers extensively all workshops, conferences, journals, books,
preprint repositories and even encyclopaedias, collectively
over three million papers. Its protection against crawling
and automated data gathering is also not as strict as Google
Scholar’s. Using two search queries: “css”4 and “cascading
style sheets”5 we found 144 + 14 items. As a way to ensure
there are no new unindexed papers left over, we did a direct
search on Science Direct, Springer Open, ACM Digital Li-
brary and IEEE Xplore, which led to 97+1 more candidates
(all from Elsevier). After removing very few duplicates as
well as substantial number of non-peer-reviewed preprints,
books, book reviews and encyclopaedia entries, we read the
abstracts and filtered out false positives about curvature scale
space, clustering and scoring strategy, carbohydrate structure
suite, etc. The remaining 41 papers were read and classified
into following topics:

• Application of CSS (out of the SLE scope): general
discussions [20, 48, 53, 82], case studies [4, 37].

• Shortcomings of CSS: harmful effect on indexing [34],
language improvement with constraints [6], extending
with Javascript [1].

• “Preprocessors”: study of current use [56], making a
new one [81], building DSLs on top [24, 74, 88].

• Syntactic conformance: two reports on the same project
to classify errors in HTML and CSS [67, 68].

• Refactoring: removing redundant rules [35, 58], size re-
duction in general [10], clone detection [57], accessibility
adaptation [98], personalisation [36, 85].

4 http://dblp.uni-trier.de/search/publ?q=CSS$ -venue:CSS
5 http://dblp.uni-trier.de/search/publ?q=cascading style sheets

• Analysis: verification [26], defect prediction [8], optimi-
sation [55], performance and energy consumption [77],
complexity metrics [2], accessibility metrics [3], quality
metrics [45].

• Security and privacy: data hiding [15, 95], engineering
attacks [49], protecting browsers from them [41], finger-
printing [89].

• IDE support: new computation models [18], new en-
gines [17,52], libraries/plugins [43], generative tool sup-
port [44], change impact visualisation [71].

Mazinanian et al. [57] have recently investigated clones
in CSS files and found a stunning 60% fraction of all CSS
belonging to clones. However, some of this duplicate code is
impossible to refactor since CSS 3 has no variables, func-
tions and other methods commonly providing alternative
means of model reuse. The same authors also go as far as
to suggest removal of selectors that seem to be unused, from
the deployed stylesheets [58]. The problem is easily solv-
able for the case of static hypertext when analysing HTML
pages is enough to assess coverage of CSS selectors. For
more typical, dynamic web pages, the usefulness of this ad-
vice heavily depends on the crawler that detects which se-
lector configurations (in the form of DOM states) are reach-
able at runtime. Their prototype called Cilla is available at
http://github.com/saltlab/cilla.

The state of the art in applying static source code analysis
techniques to this problem is the work of Hague et al. [35],
who formalised the problem of detecting unused CSS rules
in terms of symbolic pushdown systems, taking most of the
practical aspects into consideration, such as investigating
jQuery calls together with the HTML itself. The solution
prototype is available as a tool called TreePed at http://

bitbucket.org/TreePed/treeped.
If we allow ourselves to be more conservative, we can

rely on semantic stylesheet simplification; it tends to remove
around 5% of declarations and refactor another 5% while
providing universal guarantees of static semantic preser-
vation independently of the coupled hypertext, as recently
demonstrated by Bosch et al. [10]. Interestingly, Wu et
al. [95] solve the opposite problem of introducing redun-
dant selectors into existing CSS files in order to hide data in
Epub books.

Park et al. [67] studied what kinds of errors undergraduate
students made in a web development course. Even though
they focused on both CSS and HTML, none of the com-
monly occurring errors they found were related to CSS in
any way. Their taxonomy of errors [68] did include error
types applicable to CSS, but mostly on a lexical level (miss-
ing delimiter, missing unit, wrong name, wrong mode, etc)
with rare exceptions (“mistargeted style” for using proper-
ties incompatible with the selected node, overriding rules,
etc) that were almost always resolved by students right away.

https://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://dblp.uni-trier.de/search/publ?q=CSS%24%20-venue%3ACSS
http://dblp.uni-trier.de/search/publ?q=cascading%20style%20sheets
http://github.com/saltlab/cilla
http://bitbucket.org/TreePed/treeped
http://bitbucket.org/TreePed/treeped

In everyday web development life practitioners tend to
use smell detection tools like CCS Lint [19], Codacy [16],
CSS Nose [27] and W3C CSS Validator [94]. The latter con-
cerns itself only with parse errors, CSS Lint can detect a list
of predefined smells, Codacy is based on CSS Lint and is
equivalent feature-wise, and CSS Nose is based on both CSS
Lint and the W3C CSS Validator. Our work is partly mo-
tivated by extreme rigidity and lack of reconfigurability of
these tools. There is a big gap between them and completely
volatile tools such as SeeSS which assists users in identify-
ing unintended visual changes by visualizing the impact of
their CSS changes [52].

3.2 Coding Conventions
A project by Allamanis et al. [5] is among the most recent
ones on coding conventions. They used natural language
technology to detect conventions in source code — we have
recently replicated their experiments on a different dataset
with the same parameters, our conclusions supported the
original findings [61]. For the project presented in this paper
it means hope for future work on automatically inferring new
conventions that are consistent with the codebase. One of the
neighbour papers from this SLE showed how to successfully
accomplish that for layout conventions [69].

There have been substantial advances in the field of nam-
ing conventions — that is, coding conventions concerning
the names of variables and types. An example of such en-
deavours is the work of Butler et al. [11,12] which classifies
lemmas found in identifier names by parts of speech, even-
tually leading to better concept location. As shown by Lin-
stead et al. [54], such naming conventions can be modelled
with first-order Markov models and used for both classifi-
cation and adherence verification with a reasonable degree
of success. Going further down this road inevitably leads
to topic modelling [31, 40, 75, 104]. Adjacent fields of re-
search already have techniques that model users remarkably
well [46, 97].

Another relatively active research area was formed around
calling conventions [7] and produced modern software
language-level techniques like staged allocation [64].

Perhaps in the future we should speak of engineering con-
ventions or some other term for conventions of software lan-
guage use, because the term “coding conventions” implies
coding, but inexorably similar conventions are found in other
areas such as software design [79] and model-driven engi-
neering [51], as well as used to bind software artefacts of
different kinds, such as source and metadata [84]. If that is
achievable, we can connect to and profit from research on
general conventions of collaborative work [66].

Coding conventions can be seen as a form of commit-
ment to grammatical structure [47], and languages that ex-
press such commitments are not unheard of. They are usually
specific to a technological space and come in forms of BNF
dialects [99], metametamodels [63], database schema lan-
guages [38], etc. Specifically for coding conventions, there is

no widespread consensus, even though some advocate view-
ing convention adherence as a metric that can show various
degrees of success rather than a list of violations [83]. Such
adherence is apparently not just structural, since it shows im-
provement if software processes become gamified [72].

The existing work on more flexible commitments to
structure either still has a strong focus on parsing, the restric-
tions of which it tries to relax [87, 100], or on explicit mod-
elling of uncertain aspects [22, 23, 86], or on consequences
of flexibility on tool composition and pipelining [78, 101].
As already mentioned above, our work is different in the
sense that we focus on additional commitments placed on
top of another software language, with a property that they
have no noticeable implications for parsing and execution
but presumably strong relation to maintainability aspects. It
remains to be seen if and how coding conventions can be
implemented with language extensions — for now we are
encapsulating them in an external DSL, convergence comes
later.

4. Domain Analysis
In general, coding conventions is an umbrella term that com-
prises rules for whitespacing, comments, indentation, nam-
ing, syntax, code patterns, programming style, file organi-
sation, etc. W3C, the primary organisation responsible for
the specification of CSS, has not published any official CSS
style guide. As a result, the CSS community has produced
a pool of coding conventions, best practices, guidelines and
recommendations. To discover existing coding conventions,
we mined the 33,602 search results discovered in § 2. From
each result only conventions that refer to plain CSS were
taken into account, ignoring conventions related to “prepro-
cessors” and the use of CSS classes from HTML. In cases
when the result contained links to other style guides, those
references were considered as results and analysed as well.

The search yielded quite a number of convention candi-
dates that can be classified in the following groups:

Overgeneralisations: some statements positioned as
conventions were in fact not conventions at all but rather
high level guidelines lacking sufficient information to be ap-
plicable. Example: “Do not use CSS hacks — try a different
approach first”. These were omitted in our summary.

Contradictions: we often observed that conventions
were explained in a natural language and exemplified with
a code snippet. This is a common practice in software lan-
guage documentation [103]. However, at times the natural
language explanation contradicted the examples — in this
case, we have chosen to assign higher priority to the exam-
ples.

Open interpretations: since code examples usually play
the role of disambiguators, in their absence some conven-
tions are open for interpretation. Example: “Rules with
more than 3 selectors are not allowed”. One interpretation
could be forbidding multi-selectors with groups of more

than three selectors (as in “h1, h2, h3, h4 {color:red}”).
Another equally sensible interpretation is forbidding se-
lectors with a combinator sequence of longer than three
simple selectors (as in “div table tr td {color:red}”). The
third interpretation is forbidding more than three type se-
lectors or universal selectors within one sequence (as in,
“img[class~=a][src][alt] {border:0}” which qualified as
one simple selector in CSS 2.1 terminology [9] but is a se-
quence of four simple selectors in CSS 3 terminology [14],
without any change in semantics). In such cases we have
included all possible interpretations in our catalogue.

Underspecifications: in our paradigm, all guidelines in
the form “you can do X under Y circumstances” imply that
one does not do X usually, otherwise it would be pointless
to specify when one can. In such cases we interpreted all
implicit conventions explicitly. Example: “You can put long
values on multiple lines” (implies that short values should
be one-liners).

Style guides were large collections of CSS coding con-
ventions used as more or less official guidelines in organi-
sations and communities such as Mozilla [42], Google [29],
GitHub [28], WordPress [93] and Drupal [21]. In total, 28
CSS style guides were discovered, containing 10–42 con-
ventions for standalone guides or 5–10 conventions for those
that were parts of larger style guides (covering also PHP,
JS, HTML, etc). Since these style guides were written by
professionals and had clear intentions driven by community
needs or company interest, they provided the most compre-
hensive foundation for our collecting process — with the ex-
ception of convention candidates falling into the other four
categories.

The total number of conventions we discovered was 471.
However, practitioners often share the same views and spec-
ify the same conventions in different style guides. As we
found out, only one third of those conventions were unique.
Thus, the result of the searches is 143 unique coding con-
ventions appearing in CSS guidelines. The complete cata-
logue is huge and thus available online at https://github.

com/boryanagoncharenko/CssCoco/blob/master/analysis.md or
as Appendix G, but we do include some of the most popular
conventions as examples below.

The conventions in our corpus are organised in groups
depending on the exact type of constraints they impose. We
have identified these three categories:

Layout category contains rules that constrain the overall
layout of the code. It includes conventions related to whites-
pace, indentation and comments.

− Put one space between the colon and the value.
X .red {color: red;}
× .red {color:red;}

− One selector per line.
× img {border:0;} br {clear:left;}

h1,h2 {text-align:center;}

− Put one space after the last selector.
X .red {color: red;}
× .red{color: red;}

Syntax Preference category comprises conventions that
express preference of a particular syntax. Note that rules in
this category do not aim at ensuring CSS validity, but choose
between syntactic alternatives. For example, both single and
double quote strings are valid in CSS and a convention may
narrow down the choice of the developer to single quotes.
Examples include:

− HTML tags, class names and unquoted values should
be lowercase.

X span.red {color: red;}
× SPAN.RED {COLOR: RED;}

− Put a “;” at the end of declarations.
X img {border:0;}
× img {border:0}

− Do not put quotes in url() declarations.
X body{background: url(recbg.jpg);}
× body{background: url("recbg.jpg");}

Programming Style category consists of conventions
that put constraints on how CSS constructs are used to
achieve a certain goal. They specify preferred code patterns
or anti-patterns. Conventions in this group are used mainly
to improve maintenance and performance, or to avoid issues
in a particular implementation. Examples are:

− Do not use ID selectors.
× p#first {font-weight: bold;}
X div > p:first-child {font-weight: bold;}

− Avoid qualifying ID and class names with type selec-
tors.

X .red {color: red;}
× p.red {color: red;}

− When possible, use em instead of px.
X p {margin: 1em;}
× p {margin: 10px;}

As explained in the beginning of this section, our corpus
consists of 143 entries written in this style:
Description: Disallow @import

Sources: CSS Lint (Nicholas C. Zakas, “Disallow im-
port”), Real Deal (“CSS Naming Conventions and Coding
Style”), Isobar (“Front-end Code Standards”), Code Guide
(Mark Otto, “Code Guide”)
Violations: For performance reasons, the usage of @import

should be avoided. The following pattern is considered a
violation: @import url(foo.css);

Actions: Find usage of @import statements
Analysis of this corpus led us to domain knowledge

considered in more detail in subsequent sections, such as
each convention being expressible by a combination of
constraints, or using verbs forbid (“avoid”, “do not”) and
require (“use”, “prefer”, “put”) to formulate a convention.
The three categories (layout, syntax, style) correspond to
the data structures required to detect such conventions —

https://github.com/boryanagoncharenko/CssCoco/blob/master/analysis.md
https://github.com/boryanagoncharenko/CssCoco/blob/master/analysis.md
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
https://github.com/CSSLint/csslint/wiki/Disallow-%40import
https://github.com/CSSLint/csslint/wiki/Disallow-%40import
http://www.realdealmarketing.net/docs/css-coding-style.php
http://www.realdealmarketing.net/docs/css-coding-style.php
http://isobar-idev.github.io/code-standards/
http://codeguide.co/

in terms of parsing in a broad sense, Ptr (parse tree), Cst
(concrete syntax tree) and Ast (abstract syntax tree) [102].
Since we want to be able to detect all three, a parser was
needed that delivers Ptrs; we used Gonzales [50]. Such con-
sequences will be observed throughout § 5 – § 7).

5. Domain-Specific Ontology
Ontological analysis is a more or less established way of
evaluating software notations [32, 60, 65, 70, 92]. It is based
on the notion of an ontology as an explicit specification of
a conceptualisation, which in turn is an abstract, simplified
view of the world that is represented for some specific pur-
pose [33]. An ontology describes what is fundamental in the
totality of what exists and it defines the most general cate-
gories to which we need to refer in constructing a description
of reality [59]. Based on the specificity of their constructs,
ontologies can be top-level or domain-specific. Ontologies
of the former type are highly general and provide the theo-
retical foundations for representation and modelling of sys-
tems. Ontologies of the latter type define concepts and their
relations only for a particular domain. A domain-specific on-
tology is based on a specific top-level ontology if it uses the
categories defined by the high level ontology [59].

The essence of ontological analysis can be explained in
three steps: (1) designing a domain-specific ontology; (2)
defining interpretation (notation to ontology) and represen-
tation (ontology to notation) mappings with the ontology
as a reference point; (3) analysing the emerged anomalies
and drawing conclusions about the quality of the notation.
The anomalies can be of four kinds: construct deficit, when
an ontological concept does not have a corresponding con-
struct in the notation; construct redundancy, when a single
ontological concept maps to more than one notational con-
struct; construct overload, when a notational construct cor-
responds to more than one ontological concept; construct
excess, when a concept in a notation does not map to any
ontological concept [60].

Unlike traditional ontological analysis [32,65,92] requir-
ing an already existing language and its use in practice, we
apply it in an iterative forward software language engineer-
ing setup, as envisioned in the physics-of-notation method-
ology [60]. Thus, we create the ontology, map its concepts
to abstract grammatical constructs and then give them con-
crete textual notation, falling into feedback loops whenever
inconsistencies arise. The domain of the developed ontology
is detecting violations of CSS coding conventions — hence,
the designed ontology tries to capture only the concepts that
exist when an agent searches a CSS stylesheet for violations
of a given set of coding conventions.

The designed domain-specific ontology is based on the
Bunge-Wand-Weber (BWW) top-level ontology [90], which
is the leading ontology used for ontological analysis [60].
Our ontology uses the following high-level categories of the
BWW ontology to describe the objects, concepts and entities

in the specific domain: Thing (an elementary unit, compos-
ite or primitive), Properties (possessed by Things, can be in-
trinsic, emergent, hereditary or mutual), State (a vector with
all Property values of a Thing), Event (a change of State),
Transformation (mapping a set of States to a set of States),
History (a trace of States that a Thing traverses), Coupling
(two Things are Coupled if the existence of one affects the
History of another), Class (a set of Things having a charac-
teristic Property), Subclass (a set of Things within a Class
having an additional Property), System (a set of Things that
cannot be partitioned into two subsets without Couplings
across them), Composition (all Things in a System), Envi-
ronment (all Things outside the System that interact with its
components). The graph of a system can be found on Fig-
ure 2.

The designed ontology was defined, as recommended
by Wand and Weber, using a dictionary comprising def-
initions of entities in natural text, a BNF-like connection
scheme, and additionally as a system diagram that demon-
strates couplings (without using UML or ER as these mod-
elling languages are subjects of ontological analysis them-
selves) [73, 91]. Following is a list with the main concepts
discovered in the domain along with their descriptions. The
used BWW concepts are in italics and the domain-specific
concepts are in bold.

Class Style Guide describes the coding practices adopted
in the context of a single project, organization, community
or language. An individual Style Guide is a composite thing
built of Conventions. Conventions in a Style Guide are inter-
preted together to form a coherent set of guidelines.

Property Conventions refers to the conventions con-
tained in the Style Guide.

Class Convention is a specific rule that imposes con-
straints on the CSS code. Conventions are the building
blocks of Style Guides. An individual Convention is a com-
posite thing that contains a Context.

Intrinsic Property Description contains the reasoning be-
hind the Convention.

Hereditary Property Ignored Constructs denotes the de-
scription of constructs that should be ignored while search-
ing for the Convention’s Context. It is inherited by the Con-
text thing that builds a Convention.

Class Context is a description of a Pattern that the Con-
vention forbids. An individual Context is a composite thing
that comprises a Constraint or a Constraint Combina-
tor. A violation is discovered when a Pattern in the current
stylesheet fulfills all constraints specified by the Constraint
or the Constraint Combinator.

Property Ignored Constructs are descriptions of Patterns
that need to be disregarded while searching for the current
Context. In fact, the property denotes a collection of Con-
texts.

Class Constraint Combinator is an entity that connects
logically Constraints or other Constraint Combinators. An

Convention

Context

Combinator

Constraint

Style Guide

Violation

Violation Log

Stylesheet Construct

Pattern

Actor

style_guide ::= convention+ ;

convention ::= context ;

context ::= combinator | constraint ;

combinator ::= (negation_combinator

| disjunction_combinator

| conjunction_combinator

| constraint)+ ;

violation_log ::= violation* ;

stylesheet ::= construct+ ;

pattern ::= construct+ ;

Figure 2. On the left, a graph of the system: small circles represent BWW Things, lines show BWW Couplings, the big circle
is BWW System. On the right, an abstract grammar linking the things together.

individual Constraint Combinator is a composite thing that
comprises one or more logically related Constraints and/or
Constraint Combinators.

Property Number of Subjects denotes the number of
logically related Constraints and/or Combinators that are
combined.

Property Combinator Type is the particular way the
Constraints are combined.

Subclass Negation Constraint Combinator is a type of
combinator that takes one Constraint or Combinator and
returns the opposite Constraint or Combinator. An individual
Negation Constraint Combinator is a composite thing that
comprises one Constraint or Combinator.

Property Number of Subjects denotes the number of
logically related Constraints and/or Combinators that are
combined. In the case of the Negation Constraint Combi-
nator, the Number of Subjects property is equal to one.

Property Combinator Type is the particular way the
Constraints are combined. Specifically, this type of combi-
nator negates the Constraint or Combinator it takes.

Subclass Disjunction Constraint Combinator is a type
of combinator that takes two or more Constraints or Combi-
nators and combines them using the OR logical operator. An
individual Disjunction Constraint Combinator is a composite
thing that comprises two or more subjects.

Property Number of Subjects denotes the number of
logically related Constraints and/or Combinators that are
combined.

Property Combinator Type is the particular way the
Constraints are combined. Specifically, this type of combi-
nator states that at least one of the Constraints it combines
need to be fulfilled.

Subclass Conjunction Constraint Combinator is a type
of combinator that takes two or more Constraints or Combi-
nators and combines them using the AND logical operator.
An individual Conjunction Constraint Combinator is a com-
posite thing that comprises two or more subjects.

Property Number of Subjects denotes the number of
logically related Constraints and/or Combinators that are
combined.

Property Combinator Type is the particular way the
Constraints are combined. Specifically, this type of combi-
nator states that all of the Constraints it combines need to be
fulfilled.

Class Constraint is a specific restriction that needs to be
fulfilled. Constraints are used in a Context to build a descrip-
tion of a Pattern. Constraints are individual requirements that
are imposed on Subjects. Based on the value of the require-
ment, there are different types of Constraints represented be-
low as subclasses.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject.

Subclass Existence Constraint is a type of Constraint
that requires existence of the subject.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject. Specifically, the requirement is that
the Subject must exist.

Subclass Comparison Constraint is a type of Constraint
that compares the subject to another value.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject. Specifically, the requirement is that
the Subject must be related to the Value in a given way.

Property Value denotes the value that is used for the
comparison.

Subclass Type Constraint is a type of Constraint that
checks whether the subject is of a given type.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject. Specifically, the requirement is that
the Subject must be of the given type.

Property Value denotes the type that the subject should
meet to satisfy the constraint.

Subclass Textual Form Constraint is a type of Con-
straint that imposes restrictions on the textual representation
of the subject.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject. Specifically, the requirement is that
the Subject must be equal to the given Value.

Property Value denotes the textual form that the Subject
should meet for the constraint to be satisfied.

Subclass Set Membership Constraint is a type of Con-
straint that requires the subject to be a member of a set.

Property Subject indicates the thing that is being con-
strained.

Property Requirement denotes the particular limitation
applied to the Subject. Specifically, the requirement is that
the Subject must be a member of the Value.

Property Value denotes the set that the subject should be
present at for the constraint to be satisfied.

Class Literal Value is a thing that represents a constant
value. It includes numbers, strings, boolean values, etc.

Property Value denotes the specific value possessed by
the literal.

Class Violation Log is the final product of a violations
search. An individual Violation Log is a composite thing that
contains Violations.

Property Number of Violations indicates the size of the
Violation Log.

Class Violation occurs when a Pattern that matches the
Context of a Convention is found.

Property Description explains in natural text what causes
the Violation. Typically, the Description is extracted from
the Convention that the Violation breaks.

Property Position in Stylesheet indicates the location of
the Pattern that violates the Convention in the Stylesheet.

Class Stylesheet is the CSS code that needs to be checked
for compliance with the Style Guide. An instance of Stylesheet
is a composite thing that comprises a number of Constructs.

Property Checked indicates whether a Stylesheet has
been checked for compliance to a given Style Guide.

Class Construct is a part of the Stylesheet. It can refer to
nodes in the CSS abstract syntax tree, concrete syntax tree
and parse tree. Examples include whitespacing, indentation,
comments, colons, delimiters, rulesets, declarations, etc.

Property Property encapsulates properties of nodes spe-
cific to the CSS domain. For example, the type and the string
representation of the node are its properties. Similarly, spe-
cific CSS Nodes can expose properties that are tightly cou-

pled to the CSS domain, such as release date or vendor name
of a CSS property.

Class Pattern is a particular part of the CSS that matches
the description of a Context. An instance of a Pattern is a
composite thing built from one or many Constructs.

Property Number of Constructs denotes the constructs
that are contained in the Pattern.

Event Search for Violations in Stylesheet occurs when
the developer completes the search for violations in a Sty-
lesheet, a Violation Log is created and the state of the
Stylesheet is altered. When the search is completed, the
Stylesheet is considered checked for compliance to the Style
Guide.

New State Violation Log { Violations = value }
New State Stylesheet { Checked = True }
Event Context (Convention) Discovered occurs when

the Context of a convention is discovered and a Violation
is recorded in the Violation Log. The state of the Violation
contains its description and position in Stylesheet.

New State Violation { Description = value, Position in
Stylesheet = value }

Event Stylesheet modified occurs when the Constructs
in the Stylesheet are modified. The state of the Stylesheet is
changed to not checked for compliance.

New State Stylesheet { Checked = False }
Event Style Guide modified occurs when any of the parts

of a Style Guide are modified. This event changes the state
of the Stylesheet to not checked for compliance.

New State Stylesheet { Checked = False }
Most of the definitions in the ontology refer to concepts

that appear in the coding conventions domain. When not
viewed as a domain model, the ontology is certainly exten-
sible: e.g., a Style Guide for us is just a collection of coher-
ent conventions, but it can be assigned intrinsic properties
such as authorship. The ontological concept of a Conven-
tion differs slightly from the intuitive one: since ontological
concepts are concerned with the meaning of things and have
to be independent of the language used to express them, the
ontology does not possess subclasses of Convention such as
forbid (prohibit a pattern) and require (impose use limita-
tions on a pattern). The meaning of a Convention is always
expressed through the possible violations of that Conven-
tion. A Context aims at describing the whole violation pat-
tern and consists of a single Constraint or a number of logi-
cally related Constraints (requirements to be fulfilled).

The grammar in Figure 2 illustrates that a Style Guide
needs to contain one or more Conventions. A Convention
consists of a Context, which in turn, comprises either a
Combinator or a Constraint. Because a Context describes
the whole pattern that is considered a violation, it can be
expressed with a single Constraint or a combination of
logically related Constraints. A Combinator is a recursive
construct that can comprise Constraints or other Combi-
nators. Different subclasses of Combinator have different

constraints on the number of subjects they combine (one
or two). A Violation Log could exist without any Viola-
tions in the cases when a Stylesheet is checked for confor-
mance to a Style Guide and no violations are discovered.
Both Stylesheet and Pattern are defined through one or more
Constructs.

Now we complement the composition model given in
grammar form with an interaction model as a system graph
in Figure 2. According to the theory of ontological models of
information systems, a coupling occurs when the existence
of a given thing affects the history of another thing and, in
turn, history is defined as the chronological ordered states
that a thing traverses [90]. For example, a coupling exists
between the Style Guide and the Convention things, because
the existence of a Convention alters the state of the Style
Guide. Each edge on the system graph is drawn following
similar argumentation — we will spare the details here.

6. Language Syntax
For ontologically analysing already existing languages it is
usual to construct two mappings: a representation matching
the ontology and assigning notational elements to concepts
and an interpretation doing the opposite. Since we were still
in control of the language design, these could be developed
bidirectionally and straightforwardly (cf. Table 1). We can
avoid both construct overload and excess by construction.
In fact, we only had to use one property indicating construct
deficit: the property Checked of class Stylesheet, as it ap-
pears without a matching construct in the system. However,
maintaining the status of a Stylesheet is considered outside
the scope of the system, so its support is left to the environ-
ment as well.

We have some seeming redundancy. For instance, the
Conventions property of Style Guide is matched to Contexts
property of Convention Set and the Conventions property of
Context. However, this is required since the modelling gram-
mar groups Conventions that share the same Ignored Con-
structs in a Context. Thus, a Style Guide in the modelling
grammar does not possess conventions but a number of Con-
texts that, in turn, contain conventions. In this sense, the co-
existence of properties Contexts and Conventions represents
the concept of Conventions. Other cases of redundancy have
similar motivation. Mapping a single ontological concept to
a combination of modelling grammar constructs is an ac-
cepted approach and has been used in multiple studies [25].

After having designed the abstract syntax for our lan-
guage, we have implemented it in Python as an AstNode and
other classes forming a hierarchy below it, 80 classes in to-
tal. We do not include any description of this code, but it is
available for inspection in raw form as http://github.com/

boryanagoncharenko/CssCoco/blob/master/csscoco/lang/ast/

ast.py or as a collection of annotated class diagrams in Ap-
pendix D. In general it is exactly what one may expect of

stylesheet ::= context* ;
context ::= Id ignore_clause? '{' convention* '}' ;
ignore_clause ::= 'ignore' (node_desc)+ (',' (node_desc)+)* ;
convention ::= 'forbid' pattern 'message' Str

| 'find' pattern ('where' bexpr)?
('require'|'forbid') bexpr 'message' Str ;

pattern ::= node_decl (('in' | 'next-to') node_decl)*
| fork ('in' node_decl)* ;

fork ::= '(' node_decl (',' node_decl)+ ')' ;
node_decl ::= (Id '=')? semantic_node ;
node_desc ::= 'unique'? node_type ('{' (bexpr|repeater) '}')?;
repeater ::= Int ',' Int? | (',')? Int ;
bexpr ::= '(' bexpr ')' | aexpr | type_expr | 'not' bexpr

| bexpr bool_op bexpr ;
type_expr ::= aexpr operator='is' Id

| node_desc+ ('before' | 'after') type_arg
| node_desc+ 'between' type_arg 'and' type_arg ;

type_arg ::= Id | semantic_node ;
aexpr ::= ('-'|'+') aexpr | cexpr | element

| aexpr cmp_op aexpr | aexpr match_op aexpr ;
bool_op ::= 'and' | 'or' ;
cmp_op ::= '<' | '>' | '<=' | '>=' | '==' | '!=' ;
match_op ::= 'in' | 'not in' | 'match' | 'not match' ;
element ::= Bool | Real | Int | Dec | Str | list ;
cexpr ::= cexpr '.' cexpr

| Id ('(' (element | semantic_node) ')')? ;
list ::= '[' list_el (',' list_el)* ']' ;
list_el ::= Int | Real | Str | semantic_node ;
node_type ::= '(' node_type ')' | 'not' node_type

| node_type bool_op node_type | Id ;

Figure 3. A (simplified) concrete syntax grammar in
EBNF — its operational ANTLR4 counterpart is located
at http://github.com/boryanagoncharenko/CssCoco/blob/

master/csscoco/lang/syntax/coco.g4 and documented as
Appendix E.

the object-oriented design of an abstract syntax of a domain-
specific language.

Mapping abstract syntax of CssCoco to concrete textual
syntax is done similarly, the shortened grammar of the result
is presented on Figure 3, an annotated complete version
available as Appendix E.

7. Validation
To study the feasibility of the designed domain-specific lan-
guage, a proof of concept was developed. The implemented
solution consists of two parts: a standalone Python 3.4 pack-
age and a plugin for Sublime Text 3 editor.

The first part of the designed solution is the CssCoco in-
terpreter. It is implemented in almost 9000 lines of Python
code. The source code is open and publicly available:
http://github.com/boryanagoncharenko/CssCoco. The solu-
tion was also added to the Python Package Index (PyPi)
repository https://pypi.python.org/pypi/csscoco where it
received over 5000 downloads in the first month and was
enjoying around a hundred downloads a day after that until
PyPi shut down their statistics collection in February 2016.
The package offers a csscoco command that takes as argu-
ments a .css file and a .coco file and returns a list of the dis-
covered violations. The package requires Node.js because it
has a dependency on a previously existing CSS parser [50].

The second part of the proof of concept integrates the
functionality implemented in the Python package into Sub-

http://github.com/boryanagoncharenko/CssCoco/blob/master/csscoco/lang/ast/ast.py
http://github.com/boryanagoncharenko/CssCoco/blob/master/csscoco/lang/ast/ast.py
http://github.com/boryanagoncharenko/CssCoco/blob/master/csscoco/lang/ast/ast.py
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://github.com/boryanagoncharenko/CssCoco/blob/master/csscoco/lang/syntax/coco.g4
http://github.com/boryanagoncharenko/CssCoco/blob/master/csscoco/lang/syntax/coco.g4
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
https://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://github.com/boryanagoncharenko/CssCoco
https://pypi.python.org/pypi/csscoco

Ontological constructs Grammar constructs
Style Guide Convention Set
Conventions (Style Guide) Contexts (Convention Set), Conventions (Context)
Convention Convention
Description (Convention) Description (Convention)
Context Pattern Descriptor
Ignored Constructs (Context) Context
Constraint Combinator Not, Or, And Expression
Number of Subjects (Constraint Combinator) Operand of Combinator Expressions
Negation Constraint Combinator Not Expression
Disjunction Constraint Combinator Or Expression
Conjunction Constraint Combinator And Expression
Constraint Comparison, Is, In, Match, Node Query Expressions
Subject (Constraint) Operand of Constraint Expressions
Value (Constraint Subclasses) Second Operand of Binary Expression
Existence Constraint Node Descriptor, Node Relation, Node Query Expression
Comparison Constraint Comparison Expression
Type Constraint Is Expression
Textual Form Constraint Match Expression
Set Membership Constraint In Expression
Literal Value Literal Expression
Value (Literal Value) Value (Literal Expression)
Violation Log Violation Log
Violations (Violation Log) Violations (Violation Log)
Violation Violation
Description (Violation) Description (Violation)
Position in Stylesheet (Violation) Position (Violation)
Stylesheet Stylesheet Node
Checked (Stylesheet) —
Construct Variable Expression
Property (Construct) Call Expression
Pattern CSS Pattern
Number of Constructs (Pattern) Nodes (CSS Pattern)

Table 1. Representation/interpretation mapping between the domain-specific ontology and the abstract modelling grammar.

lime Text editor. The plugin uses the csscoco command
to find violations in CSS files that are being edited in
the text editor. The source code of the solution is also
publicly available at a separate GitHub repository http:

//github.com/boryanagoncharenko/Sublime-CssCoco. The plu-
gin offers a command that finds violations. Similarly to other
linter tools, lines that contain violations are marked with a
coloured border and a gist appearing at the side bar. When
the cursor is positioned on a line that contains a violation,
the error message is displayed in the status bar. For example,
on Figure 4 the cursor is placed on line 26 and the status bar
indicates that there should be one space between the colon
and the value of the declaration. Installing the plugin allows
users to edit .coco files, easily connect or disconnect them
and hook the CssCoco linter on save file action. Several ex-
amples of how convention definitions look like, follow.

forbid import

message ’No import statements’

This is one of the simplest constructions, which expresses
disallowing any @import statements. For more complex cases
we need a find/require construct:

find c=colorname

require c.string match lowercase

message ’Colours should be lowercase’

Here we tell CssCoco to find all standard colour names
in all places in a stylesheet where a colour name would be
appropriate, and assert that its string value matches a preset
regex for lowercase. The specification looks similar when
several places need to be matched:

find r1=ruleset r2=ruleset

require newline{2} between r1 and r2

message ’Separate style definitions!’

http://github.com/boryanagoncharenko/Sublime-CssCoco
http://github.com/boryanagoncharenko/Sublime-CssCoco

Figure 4. A development environment open with the Css-
Coco plugin activated and reporting three violations: double
quotes instead of single quotes; using units of measurements
with zero values; and the lack of space between the colon
and the value. The message about the latter violation is dis-
played in the status bar because the cursor is on the offending
line.

Expressions in conditions can be more complex. For in-
stance, in the next convention we search for all declarations,
then descend to their last child and compare its string repre-
sentation with the expectation:

find d=declaration

require d.child(-1).string == ’;’

message ’Missed final semicolon’

The proof of concept implementation successfully covers
all conventions found in our corpus, except the following
four kinds:
• uniqueness constraints (can be awkwardly emulated by

matching two arbitrary elements and forbidding them to
be equal);

• ordering constraints (conventions like “order selectors
by type” are tightly coupled to the CSS grammar and
requires convergence of the standard W3C grammar with
the one used by the chosen parser);

• context-dependent indentation constraints (requires re-
sults from pretty-printing research on the language de-
sign level and maintaining special contextual information
about the indentation levels on the implementation level);

• vocabulary (conventions like “do not abbreviate” require
a natural language dictionary and a robust stemmer).
Implementing all these is also possible, yet goes well

beyond a proof of concept and redirects the focus elsewhere.
Thus, it was left for future work.

8. Conclusion and Discussion
We have thoroughly analysed the domain of coding conven-
tions for CSS, adherence to them and detecting their viola-
tions. We have established the need for our research by per-
forming search engine queries, analysing public repository
commits and consuming all available relevant scientific lit-
erature. Then, we have modelled the domain with a domain-
specific ontology, designed an abstract syntax by represent-
ing that ontology in a demonstrably clear and complete way,
refined the outcome to a suitable textual concrete syntax ca-
pable of expressing domain constructs, and finally imple-
mented the CssCoco language in a prototype tool. It was
released as an open source project several months prior to
submission of this paper. It works as a command line tool
or integrates into Sublime Text, and illustrates that the sug-
gested approach enables automatic detection of violations of
user-specified conventions.

One of the threats to internal validity is selection bias:
we confined ourselves to results provided by systems like
Privatelee and GitHub; in § 2 we considered only CSS “pre-
processors” known to us — this may skew the results espe-
cially for future replications. With respect to construct valid-
ity, we tried to avoid hypothesis guessing by stating that cod-
ing conventions in general and in CSS in particular are being
discussed and not necessarily desirable — even though we
have certain hypotheses based on surveys of programmers
about code smells [96]. The obvious threat to external valid-
ity concerns the ability of the language as we have designed
it, to express all coding conventions that CSS writers could
ever come up with — this can only be addressed by itera-
tive language design and is per definition future work. On a
similar note, our tool detects refactoring opportunities [57]
and we could investigate how to act on them, thus enforcing
conventions.

There are some conceptual questions that can be asked
based on our results but are left unanswered by them. For
instance, the CssCoco language that we have designed and
implemented, allows its users to specify custom rules for
detecting coding convention violations — but is the need
for having custom conventions inherent to CSS as a lan-
guage or just to the current state of (im)maturity of the web
developing community? Could the existing linters, perhaps
with a few extensions, reach a point of widespread accep-
tance? Different existing language communities show dras-
tically different behaviours, from Go that deploys a standard
pretty-printer and declares it a sin to not use it; to C++ with a
decades long unending holy war on the rightful place of the
opening curly brace.

Software language engineers do not need to be convinced
that creating a domain-specific language is a solid approach
to solve a problem (any problem, really). However, the real
consequences and tradeoffs of pursuing that path, each time
need to be considered and communicated to software en-
gineers and industrial clients. In our case, weighing the

costs and profits of having a language to express conven-
tions as opposed to formulating coding conventions as con-
straints, patterns or traversals on top of some general purpose
metaprogramming facility, has been left out of scope for our
project. Any reasonably advanced language workbench with
the possibility of defining hierarchical algebraic data types
and transforming or constraining them, could have been used
here: Rascal, Spoofax, TXL, UML+OCL, EMF+IncQuery,
srcML+XSLT, etc. This is an interesting implementational
discussion seemingly strengthening the validation but iron-
ically being of no consequence at all to the end users who
care about the resulting tool’s capability of being integrated
into their existing workspaces.

This project, among other things, can be seen as an exer-
cise in applying the methodology of physics of notation [60],
in particular the ontological analysis [32, 65, 70, 90, 92], to
the process of designing a domain-specific language with its
domain explicitly encoded as an ontology and verifying that
artefacts of other levels: the metamodel (abstract syntax) and
the textual notation (concrete syntax) — are capable of rep-
resenting the domain concepts clearly and completely, with-
out deficit, redundancy, excess or overload of constructs. We
see the endeavour as a contribution to the software language
engineering discipline [47], and hope its degree of success
or failure (determining which is left as an exercise to the
readers) will help to shine more light on the methodology
as a whole. The fact that by far the most cited paper ever
produced within the SLE / LDTA / ATEM / WAGA com-
munity [60], is never used in day to day practice of software
language engineering, is disconcerting.

Paper supplements containing datasets for claims from
§ 2, the complete list of prior related work on CSS with
DOI links (the classification of them as well as the high-
lights were presented in § 3.1), the complete set of UML
class diagrams with accompanying documentation, as well
as the original non-shortened version of the grammar we
have shown in Figure 3 with annotations per nonterminal,
have been deposited as http://dx.doi.org/10.6084/

m9.figshare.3085831.v3.

References
[1] C. F. Acebal, B. Bos, M. Rodrı́guez, and J. M. C. Lovelle.

ALMcss: a Javascript Implementation of the CSS Template
Layout Module. In ACM Symposium on Document Engi-
neering (DocEng), pages 23–32. ACM, 2012.

[2] A. Adewumi, S. Misra, and N. Ikhu-Omoregbe. Complexity
Metrics for Cascading Style Sheets. In 12th International
Conference on Computational Science and its Applications
(ICCSA), volume 7336 of LNCS, pages 248–257. Springer,
2012.

[3] A. Aizpurua, M. Arrue, M. Vigo, and J. Abascal. Exploring
Automatic CSS Accessibility Evaluation. In Ninth Inter-
national Conference on Web Engineering (ICWE), volume
5648 of LNCS, pages 16–29. Springer, 2009.

[4] K. Alabi. Generation, Documentation and Presentation of
Mathematical Equations and Symbolic Scientific Expres-
sions Using Pure HTML and CSS. In 16th International
Conference on World Wide Web (WWW), pages 1321–1322.
ACM, 2007.

[5] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton. Learn-
ing Natural Coding Conventions. In 22nd Symposium on
the Foundations of Software Engineering (FSE), pages 281–
293. ACM, 2014.

[6] G. J. Badros, A. Borning, K. Marriott, and P. J. Stuckey.
Constraint Cascading Style Sheets for the Web. In 12th
Annual ACM Symposium on User Interface Software and
Technology (UIST), pages 73–82. ACM, 1999.

[7] M. W. Bailey and J. W. Davidson. A Formal Model of Pro-
cedure Calling Conventions. In Conference Record of the
22nd Symposium on Principles of Programming Languages,
pages 298–310. ACM, 1995.

[8] M. S. Bier and B. Diri. Defect Prediction for Cascading
Style Sheets. Applied Soft Computing, 2016. In press,
corrected proof, available online 30 May 2016.

[9] B. Bos, T. Çelik, I. Hickson, and H. W. Lie. Cascading
Style Sheets Level 2 Revision 1 (CSS 2.1) Specification.
W3C Recommendation, June 2011. http://www.w3.org/

TR/2011/REC-CSS2-20110607.

[10] M. Bosch, P. Genevs, and N. Layada. Automated Refactor-
ing for Size Reduction of CSS Style Sheets. In ACM Sym-
posium on Document Engineering (DocEng), pages 13–16.
ACM, 2014.

[11] S. Butler. Mining Java Class Identifier Naming Conventions.
In 34th International Conference on Software Engineering
(ICSE), pages 1641–1643. IEEE, 2012.

[12] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Mining
Java Class Naming Conventions. In 27th Conference on
Software Maintenance (ICSM), pages 93–102. IEEE, 2011.

[13] H. Catlin, N. Weizenbaum, and C. Eppstein. SASS: Syntac-
tically Awesome Style Sheets, 2006. http://sass-lang.

com.

[14] T. Çelik, E. J. Etemad, D. Glazman, I. Hickson, P. Linss, and
J. Williams. Cascading Style Sheets (CSS) Selectors Level
3. W3C Recommendation, Sept. 2011.

[15] Y. Chou and H. Liao. A Webpage Data Hiding Method
by Using Tag and CSS Attribute Setting. In Tenth Inter-
national Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), pages 122–125.
IEEE, 2014.

[16] Codacy. Patterns list. https://www.codacy.com/patterns.

[17] A. Cogliati, M. Pohja, and P. Vuorimaa. XHTML and
CSS Components in an XML Browser. In International
Conference on Internet Computing (IC), Volume 2, pages
563–572. CSREA Press, 2003.

[18] A. Cogliati and P. Vuorimaa. Optimized CSS Engine. In
Second International Conference on Web Information Sys-
tems and Technologies: Internet Technology / Web Inter-
face and Applications (WEBIST), pages 206–213. INSTICC

http://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://dx.doi.org/10.6084/m9.figshare.3085831.v3
http://www.w3.org/TR/2011/REC-CSS2-20110607
http://www.w3.org/TR/2011/REC-CSS2-20110607
http://sass-lang.com
http://sass-lang.com
https://www.codacy.com/patterns

Press, 2006.

[19] CSSLint. Rules. https://github.com/CSSLint/csslint/

wiki/Rules.

[20] S. Culshaw, M. Leventhal, and M. Maloney. XML and CSS.
World Wide Web Journal, 2(4):109–118, 1997.

[21] Drupal. CSS Coding Standards. https://www.drupal.org/
node/1886770.

[22] R. Eramo, A. Pierantonio, and G. Rosa. Managing Uncer-
tainty in Bidirectional Model Transformations. In Eighth
International Conference on Software Language Engineer-
ing (SLE), pages 49–58. ACM, 2015.

[23] M. Famelis, R. Salay, and M. Chechik. Partial Models:
Towards Modeling and Reasoning with Uncertainty. In 34th
International Conference on Software Engineering, pages
573–583. IEEE, 2012.

[24] A. M. Garcı́a, P. De Bra, G. H. L. Fletcher, and M. Pech-
enizkiy. A DSL Based on CSS for Hypertext Adaptation.
In 25th Conference on Hypertext and Social Media (HT),
pages 313–315. ACM, 2014.

[25] A. Gehlert and W. Esswein. Toward a Formal Research
Framework for Ontological Analyses. Advanced Engineer-
ing Informatics, 21(2):119–131, 2007.

[26] P. Genevès, N. Layaı̈da, and V. Quint. On the Analysis of
Cascading Style Sheets. In 21st World Wide Web Conference
(WWW), pages 809–818. ACM, 2012.

[27] G. Gharachorlu. Code Smells in Cascading Style Sheets: An
Empirical Study and a Predictive Model. Master’s thesis,
University of British Columbia, 2014.

[28] GitHub. Guidelines — Primer. http://primercss.io/

guidelines/#css.

[29] E. Glaysher. HTML/CSS Style Guide. https://google-
styleguide.googlecode.com/svn/trunk/htmlcssguide.xml.

[30] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman.
Lean GHTorrent: GitHub Data on Demand. In 11th Working
Conference on Mining Software Repositories (MSR), pages
384–387. ACM, 2014.

[31] S. Grant and J. R. Cordy. Examining the Relationship Be-
tween Topic Model Similarity and Software Maintenance.
In Software Evolution Week: Conference on Software Main-
tenance, Reengineering, and Reverse Engineering, pages
303–307. IEEE CS, 2014.

[32] P. Green and M. Rosemann. Integrated Process Modeling:
an Ontological Evaluation. Information Systems, 25(2):73–
87, 2000.

[33] T. R. Gruber. Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing. International Journal of
Human-Computer Studies. Special Issue on the Role of For-
mal Ontology in the Information Technology, 43(5-6):907–
928, Dec. 1995.

[34] K. Gyllstrom, C. Eickhoff, A. P. de Vries, and M.-F. Moens.
The Downside of Markup: Examining the Harmful Effects
of CSS and Javascript on Indexing Today’s Web. In 21st
ACM International Conference on Conference on Informa-

tion and Knowledge Management (CIKM), pages 1990–
1994. ACM, 2012.

[35] M. Hague, A. W. Lin, and C.-H. L. Ong. Detecting Redun-
dant CSS Rules in HTML5 Applications: a Tree Rewriting
Approach. In 30th Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOP-
SLA), pages 1–19. ACM, 2015.

[36] S. Harper, S. Bechhofer, and D. Lunn. SADIe: Transcod-
ing based on CSS. In Eighth International ACM SIGAC-
CESS Conference on Computers and Accessibility (AS-
SETS), pages 259–260. ACM, 2006.

[37] M. Hevery and A. Abrons. Declarative Web-Applications
without Server: Demonstration of How a Fully Functional
Web-Application Can Be Built in an Hour with only HTML,
CSS & Javascript Library. In OOPSLA Companion, pages
801–802. ACM, 2009.

[38] J.-M. Hick and J.-L. Hainaut. Database Application Evo-
lution: A Transformational Approach. Data & Knowledge
Engineering, 59(3):534–558, Dec. 2006.

[39] T. J. Holowaychuk. Stylus, 2015. https://learnboost.

github.io/stylus.

[40] J. Hu, X. Sun, D. Lo, and B. Li. Modeling the Evolution of
Development Topics Using Dynamic Topic Models. In 22nd
International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 3–12. IEEE, 2015.

[41] L. Huang, Z. Weinberg, C. Evans, and C. Jackson. Protect-
ing Browsers from Cross-origin CSS Attacks. In 17th Con-
ference on Computer and Communications Security (CCS),
pages 619–629. ACM, 2010.

[42] D. Hyatt. Guidelines for Efficient CSS, 2000. https://

developer.mozilla.org/en-US/docs/Web/Guide/CSS/

Writing efficient CSS.

[43] R. D. Johansen, T. C. P. Britto, and C. A. Cusin. CSS
Browser Selector Plus: A JavaScript Library to Support
Cross-browser Responsive Design. In Companion Vol-
ume of the 22nd International World Wide Web Conference
(WWW), pages 27–30. ACM, 2013.

[44] M. Keller and M. Nussbaumer. Cascading Style Sheets: A
Novel Approach Towards Productive Styling With Today’s
Standards. In 18th International Conference on World Wide
Web (WWW), pages 1161–1162. ACM, 2009.

[45] M. Keller and M. Nussbaumer. CSS Code Quality: A Metric
for Abstractness; Or Why Humans Beat Machines in CSS
Coding. In Seventh International Conference on the Quality
of Information and Communications Technology (QUATIC),
pages 116–121. IEEE Computer Society, 2010.

[46] D. Kelly, F. Daz, N. J. Belkin, and J. Allan. A User-Centered
Approach to Evaluating Topic Models. In 26th European
Conference on Information Retrieval Research: Advances in
Information Retrieval (ECIR), volume 2997 of LNCS, pages
27–41. Springer, 2004.

[47] P. Klint, R. Lämmel, and C. Verhoef. Toward an Engineering
Discipline for Grammarware. ACM Transactions on Soft-
ware Engineering Methodology (TOSEM), 14(3):331–380,
2005.

https://github.com/CSSLint/csslint/wiki/Rules
https://github.com/CSSLint/csslint/wiki/Rules
https://www.drupal.org/node/1886770
https://www.drupal.org/node/1886770
http://primercss.io/guidelines/#css
http://primercss.io/guidelines/#css
https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml#Protocol
https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml#Protocol
https://learnboost.github.io/stylus
https://learnboost.github.io/stylus
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Writing_efficient_CSS

[48] J. K. Korpela. Lurching Toward Babel: HTML, CSS, and
XML. IEEE Computer, 31(7):103–104, 1998.

[49] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson. Cross-
origin Pixel Stealing: Timing Attacks Using CSS Filters.
In SIGSAC Conference on Computer and Communications
Security (CCS), pages 1055–1062. ACM, 2013.

[50] S. Kryzhanovsky. Gonzales 1.0.7 — Fast CSS Parser, 2012.
http://github.com/css/gonzales, MIT License.

[51] C. F. J. Lange, B. Du Bois, M. R. V. Chaudron, and S. De-
meyer. An Experimental Investigation of UML Model-
ing Conventions. In Ninth International Conference on
Model Driven Engineering Languages and Systems (MoD-
ELS), volume 4199 of LNCS, pages 27–41. Springer, 2006.

[52] H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C. Lin,
and M. Y. Chen. SeeSS: Seeing What I Broke — Visualizing
Change Impact of Cascading Style Sheets. In 26th annual
ACM symposium on User Interface Software and Technol-
ogy (UIST), pages 353–356, 2013.

[53] H. W. Lie and J. Saarela. Multipurpose Web Publishing
Using HTML, XML, and CSS. Communications of the
ACM, 42(10):95–101, 1999.

[54] E. Linstead, L. Hughes, C. V. Lopes, and P. Baldi. Capturing
Java Naming Conventions with First-Order Markov Models.
In 17th International Conference on Program Comprehen-
sion, pages 313–314. IEEE CS, 2009.

[55] J. Marszalkowski, J. Mizgajski, D. Mokwa, and M. Droz-
dowski. Analysis and Solution of CSS-Sprite Packing Prob-
lem. ACM Transactions on the Web, 10(1):1, 2016.

[56] D. Mazinanian and N. Tsantalis. An Empirical Study on
the Use of CSS Preprocessors. In 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering
(SANER), pages 168–178. IEEE Computer Society, 2016.

[57] D. Mazinanian, N. Tsantalis, and A. Mesbah. Discovering
Refactoring Opportunities in Cascading Style Sheets. In
22nd Symposium on the Foundations of Software Engineer-
ing (FSE), pages 496–506. ACM, 2014.

[58] A. Mesbah and S. Mirshokraie. Automated Analysis of CSS
Rules to Support Style Maintenance. In 34th International
Conference on Software Engineering (ICSE), pages 408–
418. IEEE, 2012.

[59] S. K. Milton and B. Smith. Top-level Ontology: The Prob-
lem with Naturalism. Formal Ontology in Information Sys-
tems, pages 85–94, 2004.

[60] D. L. Moody. The Physics of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Software
Engineering. IEEE Transactions on Software Engineering,
35(6):756–779, 2009.

[61] D. C. Moya. NATURALIZE: A Replication Study. Mas-
ter’s thesis, Universiteit van Amsterdam, Amsterdam, The
Netherlands, Aug. 2015.

[62] J. V. Nickerson. Visual Conventions for System Design Us-
ing Ada 9X: Representing Asynchronous Transfer of Con-
trol. In Conference Proceedings on TRI-Ada 1993, pages
379–384. ACM, 1993.

[63] Object Management Group. Meta-Object Facility (MOFTM)
Core Specification, 2.5 edition, 2015. http://www.omg.org/
spec/MOF/2.5.

[64] R. Olinsky, C. Lindig, and N. Ramsey. Staged Allocation:
a Compositional Technique for Specifying and Implement-
ing Procedure Calling Conventions. In 33rd Symposium
on Principles of Programming Languages, pages 409–421.
ACM, 2006.

[65] A. L. Opdahl and B. Henderson-Sellers. Ontological Eval-
uation of the UML Using the Bunge–Wand–Weber Model.
Software and Systems Modeling, 1(1):43–67, 2002.

[66] U. Pankoke-Babatz, K. Klckner, and P. Jeffrey. Norms and
Conventions in Collaborative Systems. In Eighth Interna-
tional Conference on Human-Computer Interaction (HCI).
Volume 2: Communication, Cooperation, and Application
Design (CCAD), pages 313–317. Lawrence Erlbaum, 1999.

[67] T. H. Park, B. Dorn, and A. Forte. An Analysis of HTML
and CSS Syntax Errors in a Web Development Course. ACM
Transactions on Computing Education (TOCE), 15(1):4,
2015.

[68] T. H. Park, A. Saxena, S. Jagannath, S. Wiedenbeck, and
A. Forte. Towards a Taxonomy of Errors in HTML and
CSS. In Ninth International Computing Education Research
Conference (ICER), pages 75–82. ACM, 2013.

[69] T. Parr and J. Vinju. Towards a Universal Code Format-
ter through Machine Learning. In Ninth International Con-
ference on Software Language Engineering (SLE). ACM,
2016. In print. Pre-print at http://arxiv.org/abs/1606.
08866v1.

[70] J. Parsons and Y. Wand. Using Objects for Systems Analy-
sis. Communications of the ACM, 40(12):104–110, 1997.

[71] M. Pohja and P. Vuorimaa. CSS Layout Engine for Com-
pound Documents. In Third Latin American Web Congress
(LA-Web), pages 148–156. IEEE Computer Society, 2005.

[72] C. R. Prause and M. Jarke. Gamification for Enforcing
Coding Conventions. In 10th Joint Meeting of the 15th
European Software Engineering Conference and the 23rd
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 649–660. ACM, 2015.

[73] M. Rosemann and P. Green. Developing a Meta Model for
the Bunge–Wand–Weber Ontological Constructs. Informa-
tion Systems, 27(2):75–91, 2002.

[74] H. Rouzati, L. Cruiz, and B. MacIntyre. Unified We-
bGL/CSS Scene-graph and Application to AR. In 18th
International Conference on Web3D Technology, page 210.
ACM, 2013.

[75] A. Saeidi, J. Hage, R. Khadka, and S. Jansen. ITMViz: Inter-
active Topic Modeling for Source Code Analysis. In IEEE
23rd International Conference on Program Comprehension
(ICPC), pages 295–298. ACM, 2015.

[76] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigenbaum.
Private web search. In Workshop on Privacy in Electronic
Society (WPES), pages 84–90. ACM, 2007.

[77] A. Sampson, C. Cascaval, L. Ceze, P. Montesinos, and D. S.

http://github.com/css/gonzales
http://www.omg.org/spec/MOF/2.5
http://www.omg.org/spec/MOF/2.5
http://arxiv.org/abs/1606.08866v1
http://arxiv.org/abs/1606.08866v1

Gracia. Automatic Discovery of Performance and Energy
Pitfalls in HTML and CSS. In International Symposium
on Workload Characterization (IISWC), pages 82–83. IEEE
Computer Society, 2012.

[78] L. Sassaman, M. L. Patterson, and S. Bratus. A Patch for
Postel’s Robustness Principle. IEEE Security and Privacy,
10(2):87–91, Mar. 2012.

[79] A. Schroff and A. Teichrieb. Conventions for the Practical
Use of UML. In The UML — Technical Aspects and Appli-
cations, pages 262–270. Physica-Verlag, 1997.

[80] A. Sellier, J. Schlinkert, L. Page, M. Bointon, M. Juroviov,
M. Dean, and M. Mikhailov. Less, 2009. http://lesscss.
org.

[81] M. Serrano. HSS: a Compiler for Cascading Style Sheets.
In 12th International Conference on Principles and Practice
of Declarative Programming (PPP), pages 109–118. ACM,
2010.

[82] D. Shea. CSS Zen Garden. In 31st International Con-
ference on Computer Graphics and Interactive Techniques
(SIGGRAPH), Web Graphics, page 18. ACM, 2004.

[83] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia. Code
Convention Adherence in Evolving Software. In 27th Con-
ference on Software Maintenance (ICSM), pages 504–507.
IEEE, 2011.

[84] M. Song and E. Tilevich. Metadata Invariants: Checking
and Inferring Metadata Coding Conventions. In 34th Inter-
national Conference on Software Engineering (ICSE), pages
694–704. IEEE, 2012.

[85] H. Stormer. Personalized Websites for Mobile Devices
using Dynamic Cascading Style Sheets. IJWIS, 1(2):83–88,
2005.

[86] G. Succi, F. Baruchelli, and M. Ronchetti. A Taxonomy for
Identifying a Software Component for Uncertain and Partial
Specifications. In 11th Symposium on Applied Computing
(SAC), pages 570–579. ACM, 1996.

[87] F. Sur. Robust Matching in an Uncertain World. In 20th
International Conference on Pattern Recognition (ICPR),
pages 2350–2353. IEEE CS, 2010.

[88] J. Sutter, K. Sons, and P. Slusallek. A CSS Integration
Model for Declarative 3D. In 20th International Conference
on 3D Web Technology (Web3D), pages 209–217. ACM,
2015.

[89] N. Takei, T. Saito, K. Takasu, and T. Yamada. Web Browser
Fingerprinting Using Only Cascading Style Sheets. In 10th
International Conference on Broadband and Wireless Com-
puting, Communication and Applications (BWCCA), pages
57–63. IEEE Computer Society, 2015.

[90] Y. Wand and R. Weber. An Ontological Model of an Infor-
mation System. IEEE Transactions on Software Engineer-
ing, 16(11):1282–1292, 1990.

[91] Y. Wand and R. Weber. On the Deep Structure of Informa-
tion Systems. Information Systems Journal, 5(3):203–223,
1995.

[92] R. Weber and Y. Zhang. An Analytical Evaluation of

NIAM’s grammar for Conceptual Schema Diagrams. In-
formation Systems Journal, 6(2):147–170, 1996.

[93] Wordpress. CSS Coding Standards. https://make.wordpress.
org/core/handbook/coding-standards/css/.

[94] World Wide Web Consortium. CSS Validation Service.
http://jigsaw.w3.org/css-validator.

[95] D. Wu and H. Su. Information Hiding in EPUB Files by Re-
arranging the Contents of CSS Files. In Ninth International
Conference on Intelligent Information Hiding and Multime-
dia Signal Processing (IIH-MSP), pages 80–83. IEEE, 2013.

[96] A. F. Yamashita and L. Moonen. Do Developers Care about
Code Smells? An Exploratory Survey. In 20th Working
Conference on Reverse Engineering (WCRE), pages 242–
251. IEEE, 2013.

[97] Z. Yang, A. Kotov, A. Mohan, and S. Lu. Parametric and
Non-parametric User-aware Sentiment Topic Models. In
38th International SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 413–422. ACM,
2015.

[98] J. Zakraoui and W. L. Zagler. A Method for Generat-
ing CSS to Improve Web Accessibility for Old Users. In
13th International Conference on Computers Helping Peo-
ple with Special Needs (ICCHP), Part I, volume 7382 of
LNCS, pages 329–336. Springer, 2012.

[99] V. Zaytsev. BNF WAS HERE: What Have We Done About
the Unnecessary Diversity of Notation for Syntactic Defini-
tions. In 27th ACM Symposium on Applied Computing, Pro-
gramming Languages Track (SAC/PL 2012), pages 1910–
1915, 2012.

[100] V. Zaytsev. Formal Foundations for Semi-parsing. In
Software Evolution Week: Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), pages 313–317. IEEE CS, 2014.

[101] V. Zaytsev. Taxonomy of Flexible Linguistic Commit-
ments. In Workshop on Flexible Model-Driven Engineering
(FlexMDE), volume 1470 of CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

[102] V. Zaytsev and A. H. Bagge. Parsing in a Broad Sense.
In 17th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS), volume 8767
of LNCS, pages 50–67. Springer, 2014.

[103] V. Zaytsev and R. Lämmel. A Unified Format for Language
Documents. In Post-Third International Conference on Soft-
ware Language Engineering (SLE 2010), volume 6563 of
LNCS, pages 206–225. Springer, Jan. 2011.

[104] C. Zou and D. Hou. LDA Analyzer: A Tool for Exploring
Topic Models. In 30th International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 593–596.
IEEE, 2014.

http://lesscss.org
http://lesscss.org
https://make.wordpress.org/core/handbook/coding-standards/css/
https://make.wordpress.org/core/handbook/coding-standards/css/
http://jigsaw.w3.org/css-validator

