
The DSGA Model of DSL Design:
Domain, Schema, Grammar, Actions

Vadim Zaytsev
Raincode, Belgium

vadim@grammarware.net

Abstract
In the proposed talk the following two open problems of
software language engineering are discussed: (1) the process
of designing a domain-specific software language and (2) the
method of teaching domain-specific language design.

The first problem is well-known and simultaneously well-
hidden: each individual member of the SLE/DSL commu-
nity has their own method of designing software languages
and especially of implementing them, and as time goes by,
gets used and attached to this method, and quite understand-
ably so. There are very few attempts to compare the meth-
ods, and even they usually stop at feature modelling [3].
Meanwhile, all such methods receive harsh critique from the
industry for being limiting upfront, because in practition-
ers’ eyes domain specificity starts with embracing the do-
main, eliciting domain knowledge and communicating with
domain experts, where demands like “we will do it with
Haskell” or “it will work within our Smalltalk environment”
on the requirements engineering stage are premature and un-
realistic, since real solutions should integrate into clients’ in-
frastructure, not the implementers’ [1].

The second problem connects tightly into the first one,
but adds another layer of complexity. Where do we begin to
teach DSL design? What is the right order of topics? How
can we do it in a technology independent way? More impor-
tantly, how do we teach non-computer scientists to design
languages? (Because with all due respect, there are many
more non-programmers and non-engineers in the world than
otherwise). Should we put semantics first, as suggested by
Erwig and Walkingshaw [4], or explain that semantics is ir-
relevant to the language structure, per Chomsky [2]? Should
we attribute the abundance of general purpose languages
to their domain specificity (and therefore cluster them ac-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

DSLDI’16 31 Oct 2016, Amsterdam, The Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

cordingly), following Völter et al. [13], or focus on the fact
that DSLs tend to evolve with features from general purpose
languages, following Tratt [12], or combine both views? Is
it even important? Is Wirth right in saying that language
simplicity comes predominantly with modularity [14], or is
Hoare right in saying that language simplicity and modular-
ity are different and conflicting, with simplicity being the
winner in importance [7]? There are numerous claims and
assumptions like these, including many that are “common
knowledge” but cannot be traced to publications and experi-
ments, and there is no studybook yet.

Last year I was invited to give a workshop on lan-
guage design at HDSA’16, a summer academy for designers
(http://summer.hackersanddesigners.nl [5], “Bugs,
Bots and Bytes”). The workshop lasted one day. It included
introductory lectures on the history of software languages
from Ada Lovelace’ notes [10] to von Neumann and the
Goldstines’ flow diagrams [6] to Grace Murray Hopper’s
first automated translators [8] to milestone languages from
the design perspective like APL, LOGO, ALGOL-68, UML
and examples of DSLs for sheet music, electronic circuitry,
pianola plays, etc. That part was entertaining but not inno-
vative to be discussed in detail. The concluding part was
hands-on designing, which was also straightforward to exe-
cute, assuming the part in between did a good job at ex-
plaining what constitutes language design in a broad sense.
The target audience mostly consisted of product designers,
graphic designers, web designers and very few people with
computer science background, 22 in total.

The following model was developed to explain DSL de-
sign to non-DSL designers. There are these four components
of language design, that must be thought of and about, and
one chooses the component to start with depending on the
particular circumstances:

• Domain: what will the language be used for? Algo-
rithms (“programming language”)? Markup? Data? Con-
straints? Music? Dance? Finance? Food? What problems
will it help solving? What are the fundamental concepts
in this domain? What are their properties and interrela-
tions?

http://summer.hackersanddesigners.nl

• Schema: what are sentences of the language, conceptu-
ally? Lists? Sets? Trees? Graphs? Tables? Looking inside
a sentence, what is there? Are there different kinds of sen-
tences?

• Grammar: how do we write sentences down? What al-
phabet is used? How symbols are constructed in it? Text?
Table? Diagrams? Unicode? Colours? Sounds? Gestures?

• Actions: what kind of actions do we want the machine
perform while executing a program in our language? Is it
even intended for automated processing? How do words
and sentences correspond to actions?

In classic SLE terms, the Domain part is the closest to a
domain model or a domain-specific ontology; the Schema
corresponds to a database schema, a metamodel, abstract
syntax, an algebraic data type; the Grammar is indeed a
grammar in the narrow sense of concrete syntax definition,
and Actions are about the semantics, virtual machine and
similar underlying implementation details and anything else
related to runtime and execution.

Several typical ontology visualisation techniques were
shown, taken from the survey by Katifori et al. [9], but most
participants recognised the familiar mindmap view and set-
tled for it. Grammars were exemplified by BNF-like textual
notation, syntax diagrams and the gesture vocabulary from
Make It So [11].

Each participant pitched their idea for a language, and
they have all divided themselves in groups around the ideas
that seemed most promising. Most started with either a Do-
main or a Grammar. The examples of the domain-driven
design process were groups that designed languages for
communication between designers and coders (in the con-
text of a web development company) or for communicating
with legacy computers (in the context of a museum trying to
preserve cultural heritage artefacts requiring obsolete hard-
ware). The examples of the grammar-driven design process
included languages written exclusively with emojis or made
of movements of riding a bicycle. An example of a schema-
driven process was a language which program was supposed
to be painting, and an example of an action-driven process
was a language to order pizza.

At DSLDI I would like to have a discussion around the
Domain-Schema-Grammar-Actions model of DSL design,
touch on related topics such as software language design
and the approaches to teaching it, and consider the model’s
viability as well as its alternatives.

References
[1] D. Blasband. Rise and Fall of Software Recipes. Reality Bites

Publishing, 2016.

[2] N. Chomsky. Syntactic Structures. Mouton, 1957.

[3] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bos-
man, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh,

G. D. P. Konat, P. J. Molina, M. Palatnik, R. Pohjonen,
E. Schindler, K. Schindler, R. Solmi, V. A. Vergu, E. Visser,
K. van der Vlist, G. Wachsmuth, and J. van der Woning. The
State of the Art in Language Workbenches — Conclusions
from the Language Workbench Challenge. In M. Erwig, R. F.
Paige, and E. Van Wyk, editors, Proceedings of the Sixth
International Conference on Software Language Engineer-
ing (SLE), volume 8225 of LNCS, pages 197–217. Springer,
2013.

[4] M. Erwig and E. Walkingshaw. Semantics First! — Rethink-
ing the Language Design Process. In A. M. Sloane and U. Aß-
mann, editors, Revised Selected Papers of the Fourth Interna-
tional Conference on Software Language Engineering (SLE),
volume 6940 of LNCS, pages 243–262. Springer, 2011.

[5] S. Gildemacher, J. B. Graves, and A. Groten, editors. Post-
proceedings of HDSA 2015: About Bugs, Bots & Bytes. De
Punt, 2015.

[6] H. H. Goldstine and J. von Neumann. Planning and Cod-
ing of Problems for an Electronic Computing Instrument,
Part II, Volume 1. Institute for Advanced Study, Prince-
ton, NJ, 1947. https://library.ias.edu/files/pdfs/
ecp/planningcodingof0103inst.pdf.

[7] C. A. R. Hoare. Hints on Programming Language Design.
Technical report, Stanford University, Stanford, CA, USA,
1973.

[8] G. M. Hopper. Automatic Programming: Present Status and
Future Trends. In The 10th National Physical Laboratory
Symposium on Mechanisation of Thought Processes, pages
155–200, 1959.

[9] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. G.
Giannopoulou. Ontology Visualization Methods — A Sur-
vey. ACM Computing Surveys, 39(4), 2007.

[10] A. Lovelace. Notes by the Translator. In Sketch of the Ana-
lytical Engine Invented by Charles Babbage, Esq., volume 3
of Scientific Memoirs, 1843.

[11] N. Shedroff and C. Noessel. Make It So. Rosenveld, 2012.

[12] L. Tratt. Evolving a DSL Implementation. In R. Lämmel,
J. Visser, and J. Saraiva, editors, Revised Papers of the Second
International Summer School on Generative and Transforma-
tional Techniques in Software Engineering (GTTSE), volume
5235 of LNCS, pages 425–441. Springer, 2007.

[13] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. C. L. Kats, E. Visser, and G. Wachsmuth. DSL Engineer-
ing: Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[14] N. Wirth. On the Design of Programming Languages. In IFIP
Congress, pages 386–393, 1974.

https://library.ias.edu/files/pdfs/ecp/planningcodingof0103inst.pdf
https://library.ias.edu/files/pdfs/ecp/planningcodingof0103inst.pdf

