
Tool Demo: Raincode Assembler Compiler
Volodymyr Blagodarov

Raincode, Belgium
vladimir@raincode.com

Ynes Jaradin
Raincode, Belgium
ynes@raincode.com

Vadim Zaytsev
Raincode, Belgium

vadim@grammarware.net

Abstract
IBM’s High Level Assembler (HLASM) is a low level pro-
gramming language for z/Architecture mainframe comput-
ers. Many legacy codebases contain large subsets written in
HLASM for various reasons, and such components usually
had to be manually rewritten in COBOL or PL/I before mi-
gration to a modern framework could take place. Now, the
Raincode ASM370 compiler for .NET supports HLASM syn-
tax and emulates the data types and behaviour of the original
language, allowing one to port, maintain and interactively
debug legacy mainframe assembler code under .NET.
ACM Reference Format:
Volodymyr Blagodarov, Ynes Jaradin, and VadimZaytsev. 2016. Tool
Demo: Raincode Assembler Compiler. In Proceedings of Proceedings
of the Ninth ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’16). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/2997364.2997387

1 Background
The assembler language for mainframes exists since 1964
when the Basic Assembler Language (BAL) was introduced
for the IBM System/360. Around 1970 it was enhanced with
macros and extended mnemonics [10] and was shipped on
different architectures under the product names Assembler
D, Assembler E, Assembler F and Assembler XF. Assembler
H’s Version 2 became generally available in 1983 after being
announced to support an extended architecture in 1981. It
was replaced with High Level Assembler in 1992 and subse-
quently retired with the end of service in 1995. High Level
Assembler, or HLASM, survived through six releases: in 1992
(V1R1), 1995 (V1R2), 1998 (V1R3), 2000 (V1R4), 2004 (V1R5),
2013 (V1R6), not counting intermediate updates like adding
64-bit support. It is used in many projects nowadays, mostly
for the same reasons the Intel assembler is used in PC appli-
cations.
On mainframes, alternatives to HLASM (sometimes re-

ferred to as a “second generation language” to set it apart
from raw machine code) include so-called “third genera-
tion languages” (3GLs, typically COBOL, PL/I, REXX or

SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands
© 2016 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of Proceedings of the Ninth ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE ’16), https:
//doi.org/10.1145/2997364.2997387.

CLIST) and “fourth generation languages” (4GLs like RPG,
CA Gen, PACBASE, Informix/Aubit, ABAP, CSP, QMF — es-
sentially domain-specific languages for report processing,
database communication, transaction handling, interfaces,
model-based code generation, etc). To name a few concrete
examples of good reasons for HLASM usage [14]:

• Fine-grained error handling, since it is much easier
to circumvent standard error handling mechanisms
and (re)define recovery strategies in HLASM than in
any 3GL or 4GL.

• Ad hoc memory management, since HLASM al-
lows to manipulate addressing modes directly, change
them from program to program on the fly, allocate and
deallocate storage dynamically.

• Optimisation for program size and performance, as
well as efficient usage of operating system facilities,
not available directly from higher level languages, such
as concurrent and reentrant code.

• Interoperation of programs compiled for different
execution or addressing modes, low-level system ac-
cess.

• Tailoring of products. Many products can be con-
figured or extended by custom user code. However,
most of the time, the API is only available as assembler
macros.

Additionally, it is not uncommon for a system to be writ-
ten in assembler in order to evade the costs of a 3GL/4GL
compiler, which can be considerable. Such systems are either
gradually rewritten to COBOL or PL/I programs, or become
legacy. In the latter scenario they can be showstoppers in
migration and replatforming projects that can otherwise mi-
grate the remainder of the codebase frommainframe COBOL
to one of the desktop COBOL compilers (such as Raincode
COBOL) with IDE support, version control, debugging, syn-
tax highlighting, etc. This is the primary business case for
developing a compiler for HLASM and the main motivation
for us to support it.

2 Problem Description
HLASM is far from being a trivial assembler language: it is
possible to use it to represent sequences of machine instruc-
tions, but it goes well beyond that. For instance, it helps with
idiosyncrasies of the IBM 370 instruction set. In particular,
all addresses of memory references have to be represented
at the machine level as the content of a register plus a small
offset. The assembler can be instructed about what addresses

https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1145/2997364.2997387
https://doi.org/10.1145/2997364.2997387


SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands Volodymyr Blagodarov, Ynes Jaradin, and Vadim Zaytsev

the registers contain so that simple references (or complex
arithmetic expressions using them) can be converted into
a register offset pair automatically. It can also generate sec-
tions for literal values that can therefore be written directly
in the instruction where a memory reference to the constant
is expected.
HLASM is a macro assembler with a very rich, Turing

complete macro language. The macro and conditional pro-
cessing is not done as a separate pass and can use the values
of already defined symbols that have no forward references.
This is extremely powerful for the user but can put a strain
on the implementation. The macro processing power is so
great that the assembler has been provided with primitives
to output simple flat files (rather than relocatable program
objects) and several file formats unrelated to machine lan-
guage (such as CICS BMS maps [25]) are preprocessed with
the assembler.

Naturally, the assembler supports all the usual relocations
and sections that are expected in modern development en-
vironments, and even more exotic features such as multiple
entry points, explicit residency mode, merged sections or
overlays.

There is a choice of sources that can be used to gain knowl-
edge of HLASM. IBM’s Principle of Operation [22] provides a
good description of the HLASM language and an overview of
the z/Architecture. It covers in detail all the instructions and
registers provided byHLASM. It also describes how to handle
I/O and interrupts. Reading this manual helps understanding
the semantics of each instruction. IBM’s General Informa-
tion [11] is meant for people already familiar with Assembler
H V2, and mostly covers HLASM extensions, as well as the
Macro language. IBM’s Programmer Guide [24] is meant for
people familiar with both HLASM and the mainframe envi-
ronment. It describes how to assemble and run the assembled
programs on the mainframe. It also helps in understanding
the printed listing produced by the assembler (the listing
is the information provided by the mainframe assembler as
code comprehension aid). The Language Reference [23] has a
more practical approach compared to the previously cited
IBM’s references, and provides a short description of HLASM
commands accompanied with code examples.
Several good studybooks were written outside IBM as

well [1, 5, 13, 17, 18, 20], mostly either providing shorter
(compared to 2000+ pages of official documentation) and
more readable versions, or teaching HLASM to beginners by
large amounts of code samples. We have mostly relied on
Peter Abel’s Programming Assembler Language IBM 370 [1]
to understand finer points of assembler programming and
execution.

To avoid the strain on the implementation and the subse-
quent leap of faith for users of the new framework, we have
opted for emulating the original architecture as faithfully
as possible, including all peculiarities in the use of memory,
registers and counters. That way, we can run self-modifying

programs and any other typically problematic artefacts and
gracefully switch to more optimal and performing alterna-
tives whenever their applicability is guaranteed.
There are 16 general registers: R0, R1, ..., R15. They can

be used as base or index in address arithmetic, or as sources
and accumulaters in general arithmetic and logic. There are
many native operations in HLASM that work on normal bi-
nary numbers, binary coded decimals, binary floating point
numbers, decimal floating point numbers, hexadecimal float-
ing point numbers, etc, all having their own structure and
usages. Remarkably, many operations manipulate data that
does not fit within one register and implicitly bundle them
in pairs: odd with even for decimal arithmetic and jumping
over for floating point. For example, MR R4,R8 will multiply
the values of R5 with R8 and place the result’s lower bits
in R5 and higher bits in R4. A corresponding floating point
instruction MXBR R4,R8 will multiply a binary floating point
number from R4 and R6 with a binary floating point number
from R8 and R10. The R0 register cannot be used as a base
address or index in addresses, because its code 0000 is used
to encode that no base or index is to be applied.
The opcodes of HLASM instructions can be partially de-

coded (e.g., to see that specific bits represent the instruction
length), but in general have to be reimplemented based on a
20-page long table in Principles of Operation [22].

3 Solution Architecture
TheHLASM compiler is the latest component of the Raincode
Stack solution, which already covers PL/I, COBOL, CICS,
IMS, DB2, JCL and DF-Sort. The Raincode Stack is a com-
plete mainframe rehosting solution, mainly used to migrate
mainframe legacy code to the .NET/Azure platformwhile pre-
serving its technical dependencies. Most of its components
are written either in native .NET languages like C# or F#, or
in the metaprogramming languages YAFL [2], DURA [3] or
RainCodeScript [4].

When rehosting mainframe applications, it is preferable to
keep the code unmodified as it simplifies the migration and
guarantees system behaviour preservation, as long as the
mainframe behaviour is emulated exactly up to all peculiari-
ties of IBM’s compilers. After migration, new development
can be done in any .NET language and interact smoothly
with legacy applications: we can easily have a PL/I module
calling a C# module, which calls the COBOL module, which
calls the Visual Basic module, which calls the HLASM one.
To help maintaining legacy applications, Raincode pro-

vides a Visual Studio plugin for PL/I, COBOL, JCL andHLASM
languages, which offers offers almost the same experience
as working with any native .NET language like C#:

• Solution and project management for code organisa-
tion;

• Compilation and debugging using the usual Visual
Studio IDE menus and shortcuts;



Tool Demo: Raincode Assembler Compiler SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands

• Advanced editor features such as syntax highlighting,
bracket matching, code commenting;

• Visual Studio code snippets for expansion;
• IntelliSense functionality for code completion, click-
through navigation, informative hovers, member list-
ings.

In order to support unfortunate but idiomatic assembler
constructions such as self-modifying code, executable code
defined as data or code fragments used as data constants, we
need an appropriate memory representation. First, it has to
be faithful of the data manipulated by the program includ-
ing endianness (mainframes are typically big-endian) and
encodings (EBCDIC is the norm). Additionally, the actual as-
sembled machine code must be represented truthfully so that
the execution can to react to arbitrary changes to its binary
representation. The combination of these factors essentially
forces an emulation approach. However, pure emulation has
significant drawbacks.

Performance can be inadequate and while self-modifying
code can be present, it is quite often limited to very small
and specific changes (such as changing the condition on
a conditional jump) which could be handled without full
emulation of the entire program.

Debugging is not inherently more difficult in an emulator,
the main challenge is to find a way to support debugging
activities going back and forth between emulated and com-
piled modules. On the one hand, to be able to debug the
assembled code from within Visual Studio in a way consis-
tent with debugging PL/I or Cobol, the DLL (dynamic link
library) generated for an assembler module must contain a
stepping point corresponding to every instruction. On the
other hand, we want to be able to emulate every instruction,
at least as a fallback case without sacrificing the debugging
ability. Our solution is to have a function in the runtime
system for emulating a single instruction per call.

The generated DLL is, by default, mostly a series of calls to
that function interspersed with checks that the next instruc-
tion to execute is the one coming after (i.e. the instruction
just executed was not a jump and did not trigger any ex-
ceptional mechanism). This results in the execution playing
ping-pong between the generated DLL and the runtime sys-
tem but gives us the best of both worlds. We can step through
the execution, place breakpoints and watches but also have
the latest emulated behaviour without having to recompile.

We can also leverage this basic architecture to offer more
functionalities. Full tracing at the instruction level can be
enabled at assembly time and will result in extra tracing code
in the generated DLL but will not impact the performance of
other modules. If somemodule needsmore performance than
can be provided by a fully emulated solution, the assembler
inlines equivalent .NET code for some instructions in the
generated DLL. If we want to guard against self-modifying
code in this case, we can generate fast checks on the expected

memory representation and fall back to the emulator with a
very fine granularity of a few instructions.

The main instruction set (basic instructions + extended
mnemonics) of HLASM consists of 953 individual instruc-
tions, all of them described in the latest release of Principles
of Operation [22]. Some older instructions, in particular those
that existed for IBM 360 and IBM 370, can be also found in
various other sources such as the books mentioned above.
Each instruction has at least the following properties worth
mentioning:

• Name, such as “branch and link”, intended for human
comprehension, mnemonic, such as “BAL”, intended
for programmers and the parser, and opcode, such as
0x45.

• Format, defining the bit length of each instruction
and the encoding of arguments per nibble.

• Characteristics, flags describing frequently occur-
ring behaviour like changing the “condition code” (the
result code) for overflows or raising particular kinds
of exceptions.

• Semantics, described in plain English with the occa-
sional help of examples.

Let us consider the BAL instruction in more detail: it has
a format “RX-a”, which means taking up an entire machine
word (4 bytes or 8 nibbles). All RX-a instructions dedicate
the first two nibbles to the opcode, which in the case of
BAL take the value 0x45 (or 0100 0101). The next nibble
describes R1, the first argument of the instruction, with four
bits representing the register number. The fourth nibble is
X2, the fifth one B2 and the remaining three are a twelve-
bit value of D2, all three forming the second argument of
the instruction as the index, base and displacement of the
address in memory:

0 1 0 0 0 1 0 1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

OPCODE R1 X2 B2 D2

There are 57 different formats used by HLASM instruc-
tions, most described in the documentation in natural lan-
guage and some erroneously omitted or merged. Each of
them had to be coded manually, but this work was necessary
and rewarding: for instance, there are 50 instructions using
the RX-a format, and the arguments in each one of them are
treated uniformly, so the bit arithmetic steps to fetch them
are the same and thus can be generated. Some characteris-
tics such as changing the condition code, were utilised in
similar ways, but are less structured in the documentation
— meaning in practice that the 88 different ways to assign
0, 1, 2 or 3 to the condition code had to be inferred from
textual descriptions and then implemented separately in our
framework.

https://support.microsoft.com/en-us/kb/815065


SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands Volodymyr Blagodarov, Ynes Jaradin, and Vadim Zaytsev

After the uniform step of parsing the arguments as ad-
dresses, register numbers, relative offsets of immediate val-
ues, each instruction has to behave as expected. This seman-
tic had to be coded per instruction, since the original imple-
mentation is proprietary and inaccessible, and the correct-
ness of existing emulators [12] is not guaranteed. However,
we were able to ease the pain considerably by developing
a domain-specific language for expressing typical semantic
steps. This allowed us to raise the level of abstraction and
specify each operation’s semantics in terms of parametrised
steps such as:

• Fetch a value from an address in memory
• Extend the sign from an 8-bit value to 32 bits
• Compute an operation on values with a possible over-
flow

• Assign conditions to possible condition codes
• Convert a value from a zoned to a packed decimal
• Perform an action looping through consequent bytes
• Spread a 64-bit value over bytes in memory
• Set the highest bit of a value to 1

Thus, the emulator function discussed above, can be gen-
erated from a sufficiently populated and detailed model of
an instruction, and will then fetch the bytes comprising the
command, parse the arguments according to the format, per-
form the computation according to the specified semantic
steps, adjust the counters and the condition code, and return
successfully to the outer ping-pong loop.

The assembler compiler itself does not contain a definition
of the instruction set. All machine instruction are defined in a
separate file which is loaded dynamically when the assembler
starts. The basic definition of an instruction contains all the
necessary information for its parsing: the mnemonic and
opcode of the instruction but also information about the
arguments of the instruction, their numbers and types (e.g.,
register, memory reference, immediate) along with the way
they are to be serialised in the instruction.

This basic definition can be augmented in several ways. It
can contain restrictions on argument values (e.g., some in-
structions can only be used with an even register). It can give
a .NET code template to be inlined for the instruction depen-
dent on the actual values of the arguments [6]. It can describe
properties of the instruction semantics (registers accessed
implicitly, reading or writing access, jumping instructions,
etc.) that can be used by the assembler to produce diagnostic
reports and useful visualisations [27] and to optimise the
generated code for performance [9, 26].
Because these definitions are external to the assembler

executable, they are easy to update in a deployed environ-
ment and can be tailored to a particular user. This can be
used for hotfixes and workarounds but also to enforce coding
guidelines and to address site specific issues (such as dealing
with I/O operations).

The last artefact we produce in this project is documen-
tation, which is relatively easy to generate based on the
model of each instruction and according to the state of the
art practices in software language documentation [30]. We
use XHTML + CSS to reconstruct tables and descriptions
similar to the ones from Principles of Operation [22], which
show the characteristics of each instruction, the bit structure
of its arguments and the semantic steps both in plain de-
scriptive English and in generated C#. This documentation
is a helpful aid in internal knowledge sharing as well as in
validating our solution versus the original manuals.

Technically the entire solution is written in C# [7], CIL [8],
YAFL [2] and T4 [19]. The HLASM compiler and the Vi-
sual Studio plugin were excluded from the artefact evalu-
ation due to the conflict of interest (the last co-author co-
chairing the AEC), but the information on the product can
be found at its official page at https://www.raincode.com/
technical-landscape/asm370/.

4 Conclusion
We have reimplemented the IBM High Level Assembler on
the .NET Framework. The resulting compiler allows run-
ning its instructions and macros in the same environment
that already had support for COBOL, PL/I, JCL, CICS and
other mainframe languages. It was a technically challeng-
ing project with faulty original documentation, multi-phase
code generation, model-driven engineering, domain-specific
language design, as well as low level optimisations. The Rain-
code Assembler compiler makes a valuable addition to the
Raincode Stack, enabling migration of massive legacy code-
bases containing large fractions written in BAL, Assembler
H or HLASM, from the mainframe platform to .NET/Azure.
The tool we have presented allows one to emulate the

execution of HLASM programs directly, compile them to
reasonably efficient CIL code, navigate within VS, debug
even self-modifying code, and seamlessly integrate them in
a .NET ecosystem by performing calls from PL/I, COBOL,
C# or VB programs.
There have been some successful projects in migrating

HLASM to COBOL or C, far beyond trivial and enough to
keep the same team busy for at least two decades: from
1995 [29] to 2013 [28]. In the future we may decide to bor-
row their experience as well, but not as a part of regular
migration strategies. There have also been some attempts
at formal verification of assembler programs [16, 21], even
though most formalisations are fundamentally inapplicable
to self-modifying code, with very rare exceptions [15]. We
are looking forward to develop code analysis tools based on
those approaches, if the industrial need for them arises.

https://www.raincode.com/technical-landscape/asm370/
https://www.raincode.com/technical-landscape/asm370/


Tool Demo: Raincode Assembler Compiler SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands

Acknowledgements
We would like to express appreciation for the work of our
colleague Benoît Ragoen who contributed significantly to
the project by developing the prototype of the Visual Studio
plugin of Raincode Assembler Compiler.

References
[1] P. Abel. Programming Assembler Language IBM 370. Prentice Hall, 3rd

edition, 1989.
[2] D. Blasband. The YAFL Programming Language. Journal of Object-

Oriented Programming, 8(7):42–49, 1995.
[3] D. Blasband. Parsing in a Hostile World. In E. Burd, P. Aiken, and

R. Koschke, editors, Proceedings of the 8th Working Conference on Re-
verse Engineering (WCRE), pages 291–300. IEEE Computer Society,
2001.

[4] D. Blasband. Compilation of Legacy Languages in the 21st Century.
In R. Lämmel, J. Saraiva, and J. Visser, editors, Revised Papers of the
4th International Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE), volume 7680 of LNCS,
pages 1–54. Springer, 2011.

[5] F. M. Carrano. Assembler Language Programming for the IBM 370.
Benjamin-Cummings Pub Co, 1987.

[6] I. J. Davis, M. W. Godfrey, R. C. Holt, S. Mankovski, and N. Minchenko.
Analyzing Assembler to Eliminate Dead Functions: An Industrial Ex-
perience. In T. Mens, A. Cleve, and R. Ferenc, editors, Proceedings of the
16th European Conference on Software Maintenance and Reengineering
(CSMR), pages 467–470. IEEE, 2012.

[7] ECMA-334. C# Language Specification, 4th edition, June
2006. http://www.ecma-international.org/publica-
tions/standards/Ecma-334.htm.

[8] ECMA-335. Common Language Infrastructure (CLI), 6th edition, June
2012. http://www.ecma-international.org/publications/standards/
Ecma-335.htm.

[9] C. J. Fidge. Timing Analysis of Assembler Code Control-Flow Paths.
In Proceedings of the 11th International Symposium of Formal Methods
Europe: Getting IT Right (FME), volume 2391 of LNCS, pages 370–389.
Springer, 2002.

[10] GC24-3414-7. IBM System/360 Disk and Tape Operating Systems As-
sembler Language. IBM, 8th edition, Jan. 1970.

[11] GC26-4943-06. High Level Assembler for z/OS & z/VM & z/VSE Version
1 Release 6 General Information. IBM, 2013.

[12] D. S. Higgins. PC/370 Release 4.2. http://www.jaymose-
ley.com/programming/download/pc370v42.zip.

[13] C. J. Kacmar. IBM 370 Assembly Language With ASSIST. Structured
Concepts and Advanced Topics. Prentice Hall, 1988.

[14] A. F. Kornelis. Why assembler? Bixoft, http://www.bixoft.nl/english/
why.htm, 2003.

[15] T. Lake and T. Blanchard. Reverse Engineering of Assembler Pro-
grams: A Model-Based Approach and its Logical Basis. In E. Chikofsky,
L.Wills, and I. Baxter, editors, Proceedings of the 3rd Working Conference
on Reverse Engineering (WCRE), pages 67–75. IEEE CS, 1996.

[16] M. Martel. Validation of Assembler Programs for DSPs: a Static Ana-
lyzer. In C. Flanagan and A. Zeller, editors, Proceedings of the 5th Work-
shop on Program Analysis for Software Tools and Engineering (PASTE),
pages 8–13. ACM, 2004.

[17] K. McQuillen. System/360-370 Assembler Language (OS). Mike Murach,
1975.

[18] K. McQuillen and A. Prince. MVS Assembler Language. Mike Murach
& Associates, 1987.

[19] MSDN. Code Generation and T4 Text Templates. https://msdn.
microsoft.com/en-gb/library/bb126445.aspx.

[20] K. C. O’Kane. Basic IBM Mainframe Assembly Language Programming.
CreateSpace, 2011.

[21] W. J. Paul, S. Schmaltz, and A. Shadrin. Completing the Automated
Verification of a Small Hypervisor — Assembler Code Verification. In
M. Holcombe, G. Eleftherakis, and M. Hinchey, editors, Proceedings of
the 10th International Conference on Software Engineering and Formal
Methods (SEFM), volume 7504 of LNCS, pages 188–202. Springer, 2012.

[22] SA22-7832-09. z/Architecture Principles of Operation. IBM, 10th edition,
Sept. 2012.

[23] SC26-4940-06. High Level Assembler for z/OS & z/VM & z/VSE Version
1 Release 6 Language Reference. IBM, 2013.

[24] SC26-4941-06. High Level Assembler for z/OS & z/VM & z/VSE Version
1 Release 6 Programmer’s Guide. IBM, 2013.

[25] SC34-7266-00. CICS Transaction Server for z/OS Version 5 Release 2
Application Programming Guide SC34. IBM, 2014.

[26] T. Schüle and K. Schneider. Abstraction of Assembler Programs for
Symbolic Worst Case Execution Time Analysis. In S. Malik, L. Fix,
and A. B. Kahng, editors, Proceedings of the 41st Design Automation
Conference (DAC), pages 107–112. ACM, 2004.

[27] S. Toprak, A. Wichmann, and S. Schupp. Lightweight Structured
Visualization of Assembler Control Flow Based on Regular Expressions.
In H. Sahraoui, B. Sharif, and A. Zaidman, editors, Proceedings of the 2nd
IEEE Working Conference on Software Visualization (VISSOFT), pages
97–106. IEEE Computer Society, 2014.

[28] M. Ward. Assembler Restructuring in FermaT. In J. Vinju, M. Zalewski,
J. Rilling, and B. Adams, editors, Proceedings of the 13th International
Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 147–156. IEEE, 2013.

[29] M. P. Ward and K. H. Bennett. Formal Methods for Legacy Systems.
Journal of Software Maintenance, 7(3):203–219, 1995.

[30] V. Zaytsev and R. Lämmel. A Unified Format for Language Documents.
In B. A. Malloy, S. Staab, and M. van den Brand, editors, Revised Se-
lected Papers of the 3rd International Conference on Software Language
Engineering (SLE), volume 6563 of LNCS, pages 206–225. Springer, 2010.
https://doi.org/10.1007/978-3-642-19440-5_13.

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.jaymoseley.com/programming/download/pc370v42.zip
http://www.jaymoseley.com/programming/download/pc370v42.zip
http://www.bixoft.nl/english/why.htm
http://www.bixoft.nl/english/why.htm
https://msdn.microsoft.com/en-gb/library/bb126445.aspx
https://msdn.microsoft.com/en-gb/library/bb126445.aspx
https://doi.org/10.1007/978-3-642-19440-5_13


SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands Volodymyr Blagodarov, Ynes Jaradin, and Vadim Zaytsev

Figure 1. Integration of the Raincode Assembler Compiler into IDE. On the screenshot one can see Visual Studio .NET with a
demo solution and a few files open. We also see syntax highlighting and code completion, crucial features of modern IDEs
boosting software developers productivity.



Tool Demo: Raincode Assembler Compiler SLE ’16, 31 Oct–1 Nov, 2016, Amsterdam, The Netherlands

Figure 2. Debugging HLASM programs in Visual Studio .NET with Raincode Assembler Compiler. One can see from the
screenshot that it allows to set breakpoints, watch values and step through the code or into the macros. The Raincode Assembler
Debugger can cope with self-modifying code as well.


	Abstract
	1 Background
	2 Problem Description
	3 Solution Architecture
	4 Conclusion
	References

