
On the Need of Compilepretation for Legacy Languages

Vadim Zaytsev
Raincode

vadim@grammarware.net

Abstract
The context of this work is the research and development
effort that went into creating a product called Raincode As-
sembler Compiler (Blagodarov et al. 2016), a reimplemen-
tation of the IBM mainframe assembler language retargeted
and replatformed for .NET Framework (ECMA-335 June
2012). The assembler language for IBM System/360 and
newer mainframes has existed and evolved since 1964 (Abel
1989; Carrano 1987; GC24-3414-7 1970; GC26-4943-06
2013; Kacmar 1988; McQuillen 1975; McQuillen and Prince
1987; O’Kane 2011; SA22-7832-09 2012; SC26-4940-06
2013; SC26-4941-06 2013). The current version is called
High Level Assembler, or HLASM, and is widely accepted
among mainframe developers and architects as a “second
generation programming language”, thus positioning it be-
tween raw machine code and proper third generation lan-
guages like COBOL and PL/I.

HLASM is used for a number of reasons (Blagodarov
et al. 2016; Kornelis 2003), which fall roughly into three
categories. A first classic use of HLASM is to basically
write operating system components: you have full access
to memory allocation, data handling, interrupts and what-
not. Porting applications like this to anything besides the ex-
act same architecture for which they have been developed,
is unhealthy fantasy. Second, there can be pure practical
reasons of availability: HLASM developers were available
while COBOL ones were not; language choice was due to
the cost saving strategy for avoiding paying for the 3GL or
4GL compiler; fine-grained tuning of adjacent products was
available only as assembler macros, etc. In practice, such
programs gradually get rewritten in REXX, CLIST, PL/I or
any other available languages since such short-term deci-
sions are rarely profitable in the long run. However, the cost
of rewriting all of the assembler code existing within a com-
pany as just another subtask of a bigger migration project
is often unbearable—hence, if a company wants to migrate
off the mainframe into a different platform, having HLASM
sources as a part of their portfolio is one of the common
showstoppers. If this is the case for the program at hand,
we can imagine writing a compiler or interpreter that will

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

MoreVMs’17 April 3, 2017, Brussels, Belgium
Copyright c© 2017 held by owner/author(s).

handle it. The third family of reasons lies somewhere in be-
tween: system elements could have been written in HLASM
for optimisation purposes, to reduce program size, running
time, memory footprint, implement very sophisticated er-
ror recovery strategies, fine-tune memory allocation. On the
grand scheme of things this may seem like a detail, but such
details are what usually make grand schemes fall apart. In
our case, such considerations demanded high efficiency and
productivity of our “compiler”.

Writing a language processor by the book seems to be
straightforward (Grune et al. 2012): you parse the code, you
handle contexts and static semantics, you generate some in-
termediate representation, optimise it, generate code, opti-
mise it and finally interpret it or let it be interpreted by the
target machine directly. A preprocessor (Favre 1996) is also
dangling somewhere in there, with compiler book authors
usually unsure where to put it since conceptually it is a com-
piler on its own right, but its tight integration into the base
compilation chain makes separation challenging. There are
many attempts in the middle, including compilation of clas-
sically interpreted, very dynamic languages (Rigo and Pe-
droni 2006), as well as building interactive REPL environ-
ments for compiled languages to boost language learnability
and developer productivity (Imai et al. 2015).

We were faced with a barricade of challenges which I can
go deep into detail during the presentation. In particular,

• Preprocessing, Macros and Instructions are so power-
ful, expressive and versatile that one needs a very good
compiler architecture, extensible and non-trivial. As an
example, some macros need to be expanded in exactly
the same way as on the mainframe because the code they
expand to, is being read later as data; while others need
to be compiled directly into a call of the .NET API.

• Self-modification and Code Representation of mem-
ory contents that are manipulated as data and then ex-
ecuted as code, is widespread in HLASM code, which
means one needs to have bit-honest representation of all
data structures, including those exotic to the target plat-
form (such as zoned decimals). As an example, HLASM
contains an EXECUTE instruction that can take any bytes
in memory, bit-or them with a given mask and then inter-
pret them as code.

http://creativecommons.org/licenses/by-nd/4.0/


• Performance is still being an issue at least to some ex-
tent, meaning that by-the-book interpretation/emulation
is a viable technical solution but does not yield a proper
product to satisfy the needs of the industry. As an exam-
ple, approximately half of the instructions sets specific
condition codes signifying overflows, zeroness and some
other special circumstances — these need to be optimised
to be evaluated lazily since in many cases subsequent in-
structions do not check them.

The combination of these three challenges makes a per-
fect implementation impossible — since for that one needs
to implement a dead-honest emulator that covers all tiny fea-
tures of the original, and yet optimise it to make the perfor-
mance comparable to a compiler to native code. I can name
a few design and implementation decisions that allowed us
to do it anyway.

Acknowledgments
Several of my colleagues made significant contributions to
this project, in particular Yves Jaradin was responsible for
the original architecture of Raincode Assembler Compiler.

References
P. Abel. Programming Assembler Language IBM 370. Prentice

Hall, 3rd edition, 1989.

V. Blagodarov, Y. Jaradin, and V. Zaytsev. Tool Demo: Raincode
Assembler Compiler. In T. van der Storm, E. Balland, and
D. Varr, editors, Proceedings of the Ninth International Confer-
ence on Software Language Engineering (SLE), pages 221–225,
2016. doi: 10.1145/2997364.2997387.

F. M. Carrano. Assembler Language Programming for the IBM
370. Benjamin-Cummings Pub Co, 1987.

ECMA-335. Common Language Infrastructure (CLI), 6th edi-
tion, June 2012. http://www.ecma-international.org/

publications/standards/Ecma-335.htm.

J.-M. Favre. Preprocessors from an Abstract Point of View. In Pro-
ceedings of the International Conference on Software Mainte-
nance (ICSM’96), pages 329–338, Washington, DC, USA, 1996.
IEEE Computer Society Press.

GC24-3414-7. IBM System/360 Disk and Tape Operating Systems
Assembler Language. IBM, 8th edition, Jan. 1970.

GC26-4943-06. High Level Assembler for z/OS & z/VM & z/VSE
Version 1 Release 6 General Information. IBM, 2013.

D. Grune, K. van Reeuwijk, H. E. Bal, C. J. Jacobs, and K. G.
Langendoen. Modern Compiler Design. Springer, 2012.

T. Imai, H. Masuhara, and T. Aotani. Making live programming
practical by bridging the gap between trial-and-error develop-
ment and unit testing. In J. Aldrich and P. Eugster, editors,
Companion Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Systems, Programming, Languages and
Applications: Software for Humanity (SPLASH), pages 11–12.
ACM, 2015. doi: 10.1145/2814189.2814193. URL http:

//doi.acm.org/10.1145/2814189.2814193.

C. J. Kacmar. IBM 370 Assembly Language With ASSIST. Struc-
tured Concepts and Advanced Topics. Prentice Hall, 1988.

A. F. Kornelis. Why assembler? Bixoft, http://www.bixoft.
nl/english/why.htm, 2003.

K. McQuillen. System/360-370 Assembler Language (OS). Mike
Murach, 1975.

K. McQuillen and A. Prince. MVS Assembler Language. Mike
Murach & Associates, 1987.

K. C. O’Kane. Basic IBM Mainframe Assembly Language Pro-
gramming. CreateSpace, 2011.

A. Rigo and S. Pedroni. Pypy’s approach to virtual machine con-
struction. In P. L. Tarr and W. R. Cook, editors, Compan-
ion to the 21th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 944–953. ACM, 2006. doi: 10.1145/1176617.
1176753. URL http://doi.acm.org/10.1145/1176617.

1176753.

SA22-7832-09. z/Architecture Principles of Operation. IBM, 10th

edition, Sept. 2012.

SC26-4940-06. High Level Assembler for z/OS & z/VM & z/VSE
Version 1 Release 6 Language Reference. IBM, 2013.

SC26-4941-06. High Level Assembler for z/OS & z/VM & z/VSE
Version 1 Release 6 Programmer’s Guide. IBM, 2013.

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://doi.acm.org/10.1145/2814189.2814193
http://doi.acm.org/10.1145/2814189.2814193
http://www.bixoft.nl/english/why.htm
http://www.bixoft.nl/english/why.htm
http://doi.acm.org/10.1145/1176617.1176753
http://doi.acm.org/10.1145/1176617.1176753

