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Abstract
The context of this work is the research and development
effort that went into creating a product called Raincode As-
sembler Compiler (Blagodarov et al. 2016), a reimplemen-
tation of the IBM mainframe assembler language retargeted
and replatformed for .NET Framework (ECMA-335 June
2012). The assembler language for IBM System/360 and
newer mainframes has existed and evolved since 1964 (Abel
1989; Carrano 1987; GC24-3414-7 1970; GC26-4943-06
2013; Kacmar 1988; McQuillen 1975; McQuillen and Prince
1987; O’Kane 2011; SA22-7832-09 2012; SC26-4940-06
2013; SC26-4941-06 2013). The current version is called
High Level Assembler, or HLASM, and is widely accepted
among mainframe developers and architects as a “second
generation programming language”, thus positioning it be-
tween raw machine code and proper third generation lan-
guages like COBOL and PL/I.

HLASM is used for a number of reasons (Blagodarov
et al. 2016; Kornelis 2003), which fall roughly into three
categories. A first classic use of HLASM is to basically
write operating system components: you have full access
to memory allocation, data handling, interrupts and what-
not. Porting applications like this to anything besides the ex-
act same architecture for which they have been developed,
is unhealthy fantasy. Second, there can be pure practical
reasons of availability: HLASM developers were available
while COBOL ones were not; language choice was due to
the cost saving strategy for avoiding paying for the 3GL or
4GL compiler; fine-grained tuning of adjacent products was
available only as assembler macros, etc. In practice, such
programs gradually get rewritten in REXX, CLIST, PL/I or
any other available languages since such short-term deci-
sions are rarely profitable in the long run. However, the cost
of rewriting all of the assembler code existing within a com-
pany as just another subtask of a bigger migration project
is often unbearable—hence, if a company wants to migrate
off the mainframe into a different platform, having HLASM
sources as a part of their portfolio is one of the common
showstoppers. If this is the case for the program at hand,
we can imagine writing a compiler or interpreter that will
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handle it. The third family of reasons lies somewhere in be-
tween: system elements could have been written in HLASM
for optimisation purposes, to reduce program size, running
time, memory footprint, implement very sophisticated er-
ror recovery strategies, fine-tune memory allocation. On the
grand scheme of things this may seem like a detail, but such
details are what usually make grand schemes fall apart. In
our case, such considerations demanded high efficiency and
productivity of our “compiler”.

Writing a language processor by the book seems to be
straightforward (Grune et al. 2012): you parse the code, you
handle contexts and static semantics, you generate some in-
termediate representation, optimise it, generate code, opti-
mise it and finally interpret it or let it be interpreted by the
target machine directly. A preprocessor (Favre 1996) is also
dangling somewhere in there, with compiler book authors
usually unsure where to put it since conceptually it is a com-
piler on its own right, but its tight integration into the base
compilation chain makes separation challenging. There are
many attempts in the middle, including compilation of clas-
sically interpreted, very dynamic languages (Rigo and Pe-
droni 2006), as well as building interactive REPL environ-
ments for compiled languages to boost language learnability
and developer productivity (Imai et al. 2015).

We were faced with a barricade of challenges which I can
go deep into detail during the presentation. In particular,

• Preprocessing, Macros and Instructions are so power-
ful, expressive and versatile that one needs a very good
compiler architecture, extensible and non-trivial. As an
example, some macros need to be expanded in exactly
the same way as on the mainframe because the code they
expand to, is being read later as data; while others need
to be compiled directly into a call of the .NET API.

• Self-modification and Code Representation of mem-
ory contents that are manipulated as data and then ex-
ecuted as code, is widespread in HLASM code, which
means one needs to have bit-honest representation of all
data structures, including those exotic to the target plat-
form (such as zoned decimals). As an example, HLASM
contains an EXECUTE instruction that can take any bytes
in memory, bit-or them with a given mask and then inter-
pret them as code.
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• Performance is still being an issue at least to some ex-
tent, meaning that by-the-book interpretation/emulation
is a viable technical solution but does not yield a proper
product to satisfy the needs of the industry. As an exam-
ple, approximately half of the instructions sets specific
condition codes signifying overflows, zeroness and some
other special circumstances — these need to be optimised
to be evaluated lazily since in many cases subsequent in-
structions do not check them.

The combination of these three challenges makes a per-
fect implementation impossible — since for that one needs
to implement a dead-honest emulator that covers all tiny fea-
tures of the original, and yet optimise it to make the perfor-
mance comparable to a compiler to native code. I can name
a few design and implementation decisions that allowed us
to do it anyway.
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