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Introduction

Mutable state is a feature useful for programmers, but its combination with shar-
ing or aliasing makes programs much harder to reason about, both for humans
and automated tools for analysis, refactoring and optimisation. In this short pa-
per we explore options for managing sharing and data�ow to simplify automated
rewriting of programs. Consider the following code fragment:

List<Employee> list = ....;

Company c = new Company(list);

list.sort();

c.doSomething();

if (list.isSorted()) // is the list still sorted?

Assuming Java-like semantics, the exact behaviour of this code depends on
the implementation of at least Company, and possibly other parts of the program.
The list may be stored as a reference inside the company object, allowing it to
manipulate the list, which may become unsorted during the doSomething call.
However, if we are assured that no aliasing occurs, or that no statement modi�es
the list between the call to sort and the if, we (both the programmer and a
hypothetical automated tool) can infer that the list is guaranteed to be sorted,
and we may optimise the if-statement.

Su�cient knowledge of situations possible during execution of each state-
ment, enables many things: some refactorings only work on alias-free code (and
their practical implementations leave the safety questions to the programmer [5]);
many optimisations reorder or parallelise statement executions; interprocedural
analyses become simple; the statement form (update-oriented) and the expres-
sion form (value-oriented) of the same code get freely interchangeable [2].

Magnolia

We started experimenting with options listed above, in the Magnolia program-
ming language [1,2]. Its rules against aliasing are strict and control the �ow of
data in and out of procedures through parameter modes: obs[erve] � the param-
eter is read, but never modi�ed; upd[ate] � both read and written to; out[put]
� write-only. From these, we can tell which objects the result of a procedure
call depends on (the set of obs and upd arguments), and which object can be
changed by a procedure call (the set of upd and out arguments). Aliasing is
forbidden through the following strict rules: (1) assignment is copying; (2) refer-
ences are only used parameter passing; (3) an upd/out variable may not occur
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more than once in a parameter list. The Magnolia design is not unlike that of
�uent languages [6] that combine functional and imperative styles by separating
the language into sublanguages, with procedures which are fully imperative, ob-
servers, which do not cause side-e�ects, functions, which do not cause side-e�ects
and are not a�ected by them, and pures which are referentially transparent (no
side-e�ects, and return the same value on every evaluation). The invariants are
maintained by forbidding calls to subroutines with more relaxed restrictions.

Rust and Metal

Rust [8] is a systems programming language, designed for typical low-level tasks
like implementing OS kernels. Unlike most low-level languages, it is memory
safe as long as escape hatches are not used. Rust uses a�ne types and an owner-
ship system which makes sure statically that safety-ensuring invariants are not
violated. The escape hatch is the unsafe construct which delegates the task
of ensuring the invariant checks for each given unsafe block, function, trait or
implementation, to the programmer.

Metal [3] is a Rust-based language with static tracking of ownership and pre-
venting aliasing. Ownership there is managed implicitly, as opposed to in Rust
where one often needs to annotate functions with so-called lifetimes which are
associated with the types. Unlike Rust, Metal can track locations with greater
precision. However, Metal lacks a lifetime system, which means that it cannot
implement things like Rust's Drop trait (a trait in the standard library imple-
menting object destructuring in a hierarchical LIFO order).

Rust uses pointers and a�ne types to avoid aliasing of those pointers. In
contrast, Magnolia has no pointers so there is no aliasing to avoid in the �rst
place. Rust uses algebraic data types from functional languages like ML, which
makes it especially simple to deal with sum types compared to in C and OO
languages. Magnolia deliberately uses abstract (sic!) data types, which do not
have to expose their structure and allow more implementation freedom.

As a matter of principle, Rust makes all potentially costly constructs explicit.
Thus, it uses move-by-default for assignment, which is unlike both C++ and
Magnolia. This makes the use and transfer of ownership more ergonomic, and
copying assignments more explicit. However, values that are cheap to copy, are
not moved, and the programmer is allowed to make such distinctions by using
certain traits. This is an improvement on the model of C++, which also aims to
provide zero-cost abstractions to the programmer. Compared to Magnolia, Rust
provides more of a conceptual burden on both the code reader (more explicit
information) and the library author (more traits to check).

In general, Rust provides no tools for checking foreign code, and is usually
meant to interoperate with C code which has a similar memory model. Magnolia
is very di�erent since its speci�cations work the same for foreign and native
code�it expects any foreign code to be well-behaved. It will enforce no-alias
rules in calls to foreign code, but aliasing, pointers and non-determinism must
be hidden behind the interface presented to Mangolia.
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Applied Type System

ATS is a software language that combines programming with theorem proving [4]
with both dependent types and a form of linear types. In contrast to theorem
provers like Coq [9] and NuPrl [7], ATS does not employ program extraction in
order to derive veri�ed programs, and proofs are guaranteed to be erased before
runtime [4]. It achieves this by having a clear separation between proofs and
programs. One of the ideas behind ATS is that programming based on Martin-
Löf's constructive type theory seems to be too restrictive for general purpose
programming. In particular, the resulting type systems require that programs
are pure and total, while realistic programs require things like general recur-
sion, pointers and exceptions [4]. To bridge the gap, ATS provides only limited
integrated combination of program construction and veri�cation. That puts it
somewhere between Coq and Magnolia which does not integrate programs and
veri�cation as tightly as ATS, allowing foreign code to implement speci�cations
and still be able to leverage Magnolia's speci�cation and veri�cation facilities,
such as axioms.

Memory-safe programming often necessitates certain restrictions, one of them
being pointer arithmetic. In contrast, ATS allows pointer arithmetic by providing
the programmer with tools for proving the safety of the pointer manipulation
through stateful views [11]. We can compare this to Rust, which does not al-
low pointer arithmetic in its safe subset. (Strictly speaking, Rust allows pointer
arithmetic on so-called raw pointers in its safe subset, but such pointers are not
allowed to be dereferenced outside of unsafe blocks.) The programmer has to
put such things in unsafe blocks and verify by herself that the code maintains
the invariants required of safe code. One can also use stateful views to prove that
arrays are not indexed out of bounds. Arrays are an important data structure
in general in programming [10], and especially in Magnolia, since arrays provide
e�cient implementation for matrices on many architectures, which is important
for the numerical domain that Magnolia is geared towards. So, both ATS and
Magnolia provide for e�cient data structures like arrays: ATS allows for proving
properties about indexing of arrays, while in Magnolia one uses axioms to specify
the range of arrays.

Conclusion

Control of aliasing and the �ow of data in and out of procedures present us with
interesting opportunities for reasoning about programming. Alias protection is
a prerequisite for reliable information on data �ow. With ownership types we
may achieve this even without onerous restrictions on sharing, mutability and
references. Several angles may be interesting to explore further. Can we achieve
�ne-grained e�ects control with algebraic properties? Could we use ownership
without static data types? How simple can the ownership type system be, while
still providing reasoning bene�ts?
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