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Abstract
Compiler construction is one of the oldest areas of software
engineering, yet despite its maturity it has underdeveloped
sides such as compiler testing. There exist many disparate
methods for testing parsers, optimisers and other compo-
nents, but no unifiedmethodology that consumable by practi-
tioners from a book to be directly applied to fulfil their needs.

Instead of striving to cover all theoretical aspects of com-
piler testing in one paper, we present a case study for an
ongoing project of a relatively large size for our company (2
years, 3–6 devs, ∼500kLOC), a clean room compiler develop-
ment effort in replicating a 4GL. We built a model-based test
data generator, consuming manually written specs and gene-
rating necessary test code in the 4GL, in the host language,
and in auxiliary DSLs (batch files, XML project descriptions),
to both the developers’ and the customer’s satisfaction. The
number of specs is 927 at the publication time, while the
number of test cases generated from them, is 6268. All these
tests have been run prior to shipping for the last 49 releases
of the compiler, both to ensure the lack of regression and to
report on the project overall progress. The generated tests
are separated into 11 categories which the paper details in
the hope that the classification will aid in seeking related
work and in pushing this line of research forward.

CCS Concepts • Software and its engineering→Com-
pilers; Software testing and debugging;
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1 Introduction
There are two cardinally opposite views on software tes-
ting. One can be defined as Dijkstra’s famous “testing shows
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the presence, not the absence of bugs” [9, p.21]. The other
one was advocated by Goodenough as “properly structured
tests are capable of demonstrating the absence of errors in a
program” [13], which puts testing on the same level as ve-
rification which has always been viewed as its bigger and
smarter cousin. (“[If] you have [been] given the proof of cor-
rectness, [you] can dispense with testing altogether” [28, p.51]).
The three middle ground sweet spots commonly found in
software engineering, are:

• Best effort: especially for certification purposes, it is
important to demonstrate the intent to break claimed
functionality, even if such attempts ultimately fail. In
practice, however, it is relatively rare to invest in tes-
ting significantly without finding any bugs at all, since
in general an average software system is of imperfect
quality [31, 39, 49].

• Coverage-driven: defining some metric of how good a
test suite is, and working towards increasing it up to
some exhaustion point. It has been known for a long
time that “tests based solely on the internal structure
of a program are likely to be unreliable” [13]. Instead,
we should focus on conditions that can be observably
violated, and test for all combinations of them.

• Refactoring support: test cases can encapsulate ex-
isting or desired behaviour of the system before its
internal structure is about to change, and then used
to ensure that the change did not affect the execution
semantics [12]. This path is commonly taken when
dealing with legacy code [10].

Compiler testing is an interesting subtopic with many
challenges. There is definitely industrial need and demand
for it, but the usual time pressure does not allow for in depth
investigations and methodological explorations. In the rest
of the paper we will explain how such challenges were faced
in one standalone project.
As an example, we take an ongoing project of Raincode

Labs. Its origins and peculiarities will be briefly described
below—for a more extended version the readers are invited
to explore Parser Generation by Example [45, §1]. For legal
reasons we will continue calling our primary client of this
project, A. It is a company working in the banking sector,
which owns a multi-million line codebase. It was developed
over decades of company growth and contains most of its
business rules and IT assets. Besides COBOL and PL/I which
are routinely encountered in our line of business, the code-
base contains almost 70k modules in a fourth-generation
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language we will call B. Even though A has over 150 deve-
lopers actively creating new software in that language on a
daily basis, B has been classified by the top management as
a liability for the future and scheduled for retirement in its
current incarnation. We are now in the process of writing a
full-fledged compiler for B targeting the .NET Framework.
When the project is completed, it will allow A to deploy
their products on commonplace hardware or modern plat-
forms such as Azure, to write hand-tweaked components in
modern programming languages such as C♯ and, most im-
portantly, to hire young professionals otherwise frightened
off by the prospect of learning an obscure dying language
as the first job requirement. Currently we have reached the
point of compiling the entire codebase and performing the
successful end-to-end runs that originate in a window on an
end user’s computer, go through all the layers of architecture
to the database, and display the query result back to the user.
The documentation of B is partly non-existent, partly

outdated and ultimately protected legally by an explicit dis-
claimer that only paying customers of B’s current rights
owner are allowed to read it (which rules us out). Hence,
the development relies primarily on the analysis of the code
owned by A, as well as on collaboration with A’s domain
experts. The source artefacts are written in several inter-
related domain-specific notations, ranging from JSON-like
and XML-like notations to “proper” algorithmic imperative
textual coding syntaxes. The details of those notations are
irrelevant for the focus of this paper, but their existence and
plurality are relevant signs of the problem complexity.

2 Test Kinds
Tests are used for at least three purposes within this project:

• Measure the progress of the project, providing solid
figures to A to demonstrate planned compiler develop-
ment milestones. We can appreciate how this purpose
might seem mundane and distastefully political, but it
plays an important, hard to overrate, role in industrial
projects. For instance, shipping timestamp formatting
was not enough, but stating that it works based on
the fact that it has been tested on all format strings
present in the codebase, and providing a collection of
compilable and executable test cases to support the
claim, had a stronger and more lasting effect.

• Catch regressions and monitor preparedness of the
compiler to be shipped. In this project we have been
delivering new versions of our compiler on an approx-
imately weekly basis 49 times by now, and it quickly
became a mandatory procedure to run all available
test cases, including the overall six-hour long recom-
pilation of the entire codebase of A, to uncover unex-
pected regressions. On many occasions (∼30%), such
regressions caused a delay of a day or two in the next

version delivery, which was almost always better than
shipping a defective version knowingly.

• Implement new functionality, TDD (test-driven deve-
lopment [4, 29]) style, or refactor existing functionality
the classic way [12], by having tests cases represent
the current behaviour and their non-regression serve
as the evidence of preserving it.

To satisfy these three emerged objectives, we need to
make the test cases easy to explain and communicate and
as exhaustive as possible. Formally, we see each test case
specification as a definition of a binding between some form
of input and some sort of output, and explain it below as
such. Within this project, we are actively using the following
ten kinds of test cases:

• R (recognised) binds a textual input of the compiler to
the fact that it is parsable (i.e., the parser must succeed
to produce a non-empty smell-free parse tree).

• P (parsed) binds a textual input of the compiler to the
graph, with the intention of having it parsed exactly
as the structure provided.

• Q (roundtrip) technically has the same binding as the
R-tests, but during the execution of the test it is parsed,
unparsed and reparsed again, with equivalent result
of the two parses.

• N (normalised) has the same binding as for P-tests,
but the equivalence of the resulting tree with the ex-
pected baseline is done later in the pipeline, after the
symbol table has been created and certain syntactic
sugar constructs have been desugared.

• T (typed) binds a compileable program to some piece
of its metadata. Classically it is a symbol table, which
associates the name of an entity such as a variable,
with its derived attributes such as a type and scope.
The T-tests contain predominantly typing assertions.
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Figure 1.A plot showing how the number of test cases incre-
ases per release, as reported by the language documentation
accompanying each shipment. Older figures are harder to
track but according to the version control, the work on test
cases started at least 50 weeks before the first official release.
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• C (compiled) binds a textual input with the fact that
this program is supposed to be consumed by the com-
piler which should produce a sensible DLL (a dynamic-
link library, an atomic deployment entity onWindows).
The resulting DLL is not checked for executability,
but its bytecode is checked for verification with PE-
Verify [30]. If the input program is erroneous to some
extent, then the warning(s) and the error(s) produced
by the compiler, are also checked by such a C-test.

• F (failed) has the same binding as C-tests but the com-
pilation is expected to fail yielding a particular error
specified by the test case definition (i.e., the errors are
fatal: missing declarations, type inference incompati-
bilities, parsing failures, etc).

• S (successful) binds a textual input that can be fully
parsed, normalised, typed, compiled and executed, with
an a priori known outcome. This is the most advanced
kind of tests we have, which stresses several phases
of the compiler and the language runtime. All tests
are written in a style to be self-sufficient for execution
(i.e., there are no dependencies among test modules)
and to print all the data that can help determining
whether the execution was normal. Then, the testing
framework catches the output produced by executing
a test case, and compares it with the baseline value
specified in the test case definition.

• X (exception) has the same binding as S-tests but the
output usually contains an error code of the exception
that is supposed to manifest itself.

• D (direct) is a piece of bare C♯ code that emulates
some small fragment of a runtime library function
usage. Technically all D-tests can be lifted to be S-tests,
but sometimes it is more comfortable for debugging
purposes to have the testing code as close to the code
under test as possible. We seize this opportunity to
write D-tests in an elaborate way: for instance, a date
formatting test case loops over all valid days, months
and years, and compares the output of the library for-
matter with the one given by .NET.

Figure 1 shows how the number of tests grows with time.
In particular, we see that R-tests grow continuously, P-tests
used to follow them and stabilised mid-project, Q-tests were
introduced at a late stage, F-test and X-tests are underdeve-
loped and D-tests grow in spikes.

3 Usefulness
R-tests were noticeably helpful during the early stages of
the project when not all of the codebase can be parsed yet.
The theoretical basics of incremental grammar engineering
have already been covered previously by Klint et al. [18] as
well as by Lämmel [23, 25], with case studies dissected by
van den Brand et al. [5, 6], Sellink and Verhoef [33], Lämmel

and Verhoef [20, 27], Tratt [36], Visser [38], Alves and Vis-
ser [1], Zaytsev [40–44], Vavrová and Zaytsev [37]. Later in
the project the R-tests were mostly used to control possible
regressions after grammar adaptation tweaks, and otherwise
were always expected to stay in the green. At the time of the
publication we had 1359 R-tests.
The P-tests were used for the same purpose in the first

stages of the project, as an aid to tweak usual problematic
places in the grammar: ambiguities, priorities, associativity,
etc. However, they were useful later in the project as well to
fine-tune certain parsing oddities. For instance, in B there is
a multiple branching construct that can look like this:

CASEOF A
CASE B C D

ENDCASE
In this construction, A is compared with B and the branch

is entered if the equality is observed. However, C can also
turn out out to be a call to a user-defined procedure. In this
case, if the procedure has a non-void return type and that
type is compatible with the type of A, it is treated as a part of
the condition (so the branch is also entered if A is equal to C).
If C returns nothing, it is treated as the first statement of the
branch. If it returns a value that cannot be converted into
a type compatible with A, then it is still treated as the first
statement of the branch, but the return value is simply dis-
carded. Such details became known to us many months after
the start of the project, because they represent collaboration
of several features of the software language (space as a sepa-
rator between values of the same case and the ability to call
non-void procedures as void ones) and thus are hard to antici-
pate. Our eventual implementation of this context-sensitive
parsing involved parsing its first context-free approxima-
tion and performing subsequent tree rewriting [3] based on
the symbol table once it can be constructed. Having P-tests
with an evident binding between a source code input and
the expected tree structure that the parser is expected to
deliver, was a great help in both developing and debugging
the solution.
The further into the project, the more the emphasis shif-

ted from P-tests towards Q-tests which could be inferred
automatically by the framework. Specifying a tree structure
manually was made as comfortable as possible with a special
DSL, but was still rather labour intensive. Hence, in later
phases of the project, when parsing was not expected to fail
or misbehave, it was better to invest the effort elsewhere.
The S-tests received most attention both from our side

and from A (who even developed their own test programs,
which we included in the suite but did not deem all that
useful for modularity purposes: it is essentially one big 3000
LOC program). The state of the art in S-tests is biased to-
wards testing optimising compilers and is trying to answer
the question of how to ensure that the optimised compiled
code has the same observable behaviour as the unoptimised
compiled code. Approaches vary from formal specification
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of optimiser patterns to a straightforward brute force com-
parison checking of outputs of the two versions [16].

F-tests sounded like a good idea, especially in the context
of well-known drawbacks of positive-only test suites [2, 47],
but were not of much use until recently. Their runtime coun-
terparts X-tests are planned to be exhaustively covered in
the near future because the design of exceptions is stabilising
and it is known that reliability is only reachable when “all
exceptions are testable and tested” [13].

4 Future Plans and Related Work
For comprehensive coverage of related work on compiler
testing [19] and verification [8] we refer to corresponding
elaborate surveys. In this section we collect a few directions
that have been explored in the past in related research ende-
avours but not utilised to their fullest within this project.

One of the first things worth exploring is R-testing with ge-
nerated test data. There is a famous algorithm of generating a
small set of short test sentences from a context-free grammar,
initially proposed by Purdom [32] and later extended with
backtracking [17], actions [7], controlled coverage [26], etc.
Just as with mundane software testing, in parser testing rule
coverage is known to be important but fundamentally insuf-
ficient [24]. Coverage can be seen as two-dimensional [14]
with a syntactic axis (nonterminals, rules, etc.) and a se-
mantic one (computations, calculations, attributes, etc). The
coverage issue even can be and is ignored by some of the
approaches, but in that case it is unclear when the test case
adding process can/must end [19].

Fischer et al. [11] use grammar-based test data generators
to compare several alternative grammars for reportedly “the
same” language. It was advocated to be used to choose among
available grammars, but we can rely on it to tweak the parser
for performancewithout regression (differentially comparing
alternative implementations), or simply for increasing the
collection of short debuggable programs that are expected
to be parsable (perhaps with manual post-processing by a
language expert filtering out pointless generated test data).
There is a lot of related work on N-testing of optimisers.

For example, OTK [48] is a system that allows for abstract
specification of an optimiser in such a way that the metamo-
del of its input data can be constructed, from which test data
is generated and fed into the optimiser. Without the break
of generality, we can consider it a unidirectional scenario
synchronising the test suite when the compiler is changed,
with the algorithm specification being manually inferred
from the compiler and the rest of the steps are automated.
CompCert [22] uses a similar approach by constructing

semantic preservation proofs in the calculus of inductive and
coinductive constructions. This is mostly useful in making
so-called “verified compilers” where most program transfor-
mations (typing, stack/register allocating, instruction sched-
uling, etc) are formally verified and thus more secure. This
approach is mostly applied to code generation and is aimed

at proving that the source program and the code it compi-
led to, have the same observable behaviour (by proxy: if a
source program satisfies some specification, the code does
the same). CompCert is aimed at a subset of C, it has direct
competitors like Verisoft [21], and there are similar initiati-
ves for other languages, such as VerifiCard [35] aimed at a
subset of Java. Each one of them is a massive effort since it
includes a complete formal specification of the underlying
language semantics. To the best of our knowledge, there are
neither research teams nor companies currently investing
substantial effort into building a certified compiler for C♯ or
for any of the 4GLs.

In our setup, the compiler infrastructure (e.g., the specifi-
cation of the language) and the testing infrastructure (test
specifications themselves plus the framework to run them
plus the generator that does most of the scrupulous heavy
lifting) are mostly disjoint, but they do not have to be. For
example, Λ∆Λ [15] is a system for tool-aided construction of
such a detailed language specification (in the form of modu-
lar attribute grammars, a typical language constructs library
and a knowledge base) that both a prototype interpreter and
test data generator can be inferred from it automatically.
Looking away from the prototypical nature of the Λ∆Λ, we
can count it as an early attempt to encapsulate the intent
behind each test. Whether we will merge the infrastructures
for this project or not, remains to be decided, but intent en-
capsulation and refinement is going to be the crucial core if
we ever hope to achieve a comfortable setup with test suite
coverage and bidirectional evolution.

5 Conclusion
In this paper we have shared lessons learnt from writing an
industrial compiler for a legacy 4GL. From the first day of the
project, testing of the compiler was among the things that
enjoyed most of our attention. After a short introduction
into the topic and the project in §1, we presented 10 kinds of
test cases mostly used by us in §2. Their value for the project
was discussed and compared to prior research in §3. More
related work was pointed out in §4 along with future plans.

Finding the right balance between occasional ad hoc tests
and running massive overnight recompilation jobs, is not
easy, but we believe there are many lessons to be learnt on
this way, and hope to contribute a few steps there.
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