
Fourth Generation Languages are Technical Debt
Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

Johan Fabry
Raincode Labs

Brussels, Belgium
johan@raincode.com

EXTENDED ABSTRACT

Fourth Generation Languages, or 4GLs, were highly praised
in the 1960s through 1980s [1], [2] for being non-procedural
high level specification languages that allow software de-
velopers to write concise yet readable code that is easier
to design, develop, evolve and maintain. As time goes by,
some of those languages evolved into what we call now
Domain-Specific Languages, or DSLs, and manage to satisfy
their customers by providing domain-specific notations and
abstractions, advanced tool support, sufficient configurability,
boosts in productivity and maintainability, etc. However, many
of them are being retired and pushed out of the market,
some faster than others when the vendors of their compilers
announce the day when they stop maintenance and support. In
slower cases the language compiler changes its owner several
times and usually ends up being owned by a big corporation
in its trophy collection next to other compilers with minimal
support and maximal fees. Such languages are usually seen as
legacy [3], [4], and owners of codebases and portfolios largely
relying on such 4GLs, actively undertake steps towards their
retirement, investing millions in multi-year plans for software
modernisation [5], [6].

4GLs do not have to be seen as technical debt, but we
claim that they should. Having a codebase written in a
legacy unmaintained 4GL is a result of a series of (arguably
small) mistakes in digital portfolio management and software
development strategies. Moreover, relying on such a 4GL
is not deadly for a company, since usually the code works
as intended and can be kept operational for many years
to come. However, it is rather costly—for many reasons,
the simplest one being the inability to find experts in that
language and as a consequence, the necessity to invest in hiring
people with generic skills and a desire to learn, and educating
them up to the required level of specialisation. Other reasons
typically include paying unjustifiably high fees for both system
software (such as a compiler, and IDE and/or a DBMS) and
hardware (e.g., the mainframe). These costs are constantly and
unstoppably growing, until something drastic is done: either
the codebase is discarded, or the assets are migrated, or the
owner declares bankruptcy, etc.

When we view 4GLs as technical debt, there is one obvious
technical solution to the problems related to them: refactoring.
Since the conceptual gap between a 4GL and mainstream
GPLs is too big [4], [6], it cannot be done directly. However,

many 4GLs are built as compilers to a higher-level software
language with a compiler available (such as COBOL or PL/I).
This generated code in COBOL or PL/I is feature-equivalent to
the code in 4GL because it is essentially the code that is being
deployed and tested. All its undesirable properties from bad
indentation to unstructured GO TOs, can then be refactored.
Once the COBOL or PL/I code has reached tolerable levels of
quality, it can be migrated to another platform, a more suitable
IDE, integrated with other systems and languages, etc.—the
options available for legacy GPLs are much wider than the
options for legacy 4GLs.

In our demonstration we would like to focus on one tool
in particular, used to migrate over 200 MLOC of production
code owned by various companies [7]. The migration starts
with a codebase written in a 4GL called PACBASE, developed
in France in 1972 [8]. The PACBASE code is compiled to
COBOL code, which suffers from all kinds of problems and is
for all means and purposes impossible to maintain. However,
we developed hundreds of refactorings aiming at improving
the technical quality of COBOL code with a specific focus on
COBOL generated from PACBASE. Namely, we:

• clean up GO TO and PERFORM THROUGH constructs
• promote loops to VARYING clauses
• reverse engineer COMPUTE statements
• remove dead code and unused variables
• enforce consistent use of END-IF and its kind
• pretty-print the remaining code
This tool has been used in many projects and served as

a foundation for many successful migration endeavours for
various customers of Raincode Labs over the years.

REFERENCES

[1] L. Schlueter, User-Designed Computing: The Next Generation. Lexing-
ton Books, 1988.

[2] J. Martin, Applications Development Without Programmers. Prentice-
Hall, 1981.

[3] M. Feathers, Working Effectively with Legacy Code. Prentice-Hall, 2004.
[4] V. Zaytsev, “Open Challenges in Incremental Coverage of Legacy Soft-

ware Languages,” in PX/17.2, 2017, pp. 1–6.
[5] R. Khadka, A. Saeidi, S. Jansen, J. Hage, and G. P. Haas, “Migrating

a Large Scale Legacy Application to SOA: Challenges and Lessons
Learned,” in Proceedings of the 20th Working Conference on Reverse
Engineering. IEEE, 2013, pp. 425–432.

[6] A. A. Terekhov and C. Verhoef, “The Realities of Language Conversions,”
IEEE Software, vol. 17, no. 6, pp. 111–124, Nov./Dec. 2000.

[7] Raincode Labs, “PACBASE Migration: More than 200 Million Lines
Migrated,” https://www.raincodelabs.com/pacbase/, 2018.

[8] A. Alper, “Users Say Pacbase Worth Effort,” Computerworld, vol. 21,
no. 33, pp. 21–23, Aug. 1987.


