
Quality First! A Large Scale Modernisation Report
Leszek Włodarski

mBank, Warsaw, Poland
Leszek.Wlodarski@mbank.pl

Boris Pereira, Ivan Povazan, Johan Fabry, Vadim Zaytsev
Raincode Labs, Brussels, Belgium

firstname@raincodelabs.com

Abstract—Typically in modernisation projects any concerns
for code quality are silenced until the end of the migration, to
simplify an already complex process. Yet, we claim from experi-
ence that prioritising quality above many other issues has many
benefits. In this experience report, we discuss a modernisation
project of mBank, a big Polish bank, where bad smell detection
and elimination, automated testing and refactoring played a
crucial rule, provided pay-offs early in the project, increased
buy-in, and ensured maintainability of the end result.

I. INTRODUCTION

It is always tempting to migrate the legacy system first, and
then perform quality improvements with modern technology.
Raincode Labs routinely takes on such projects, and observes
how the wishes of the customers are mostly to migrate “as is”
and plan to improve the quality later. There are mostly two
linked risks here: (1) migrating bad code makes the migration
trickier, and (2) the plans never realise themselves.

The project we report on in this paper, concerns migrating
the central banking system of mBank (CBS from now on)
from an old technological stack to the .NET Framework. We
show that prioritising quality resulted in significant benefits up
front and incomparably more maintainable code. Quality as a
migration enabler is visible in three ways:

1) Showing early pay-offs at different levels, gaining sup-
port for the migration project.

2) Minimising migration-induced disruption since docu-
mentation and testing are deployed before migration.

3) Reducing maintenance effort of the legacy system, free-
ing resources for the migration as such.

We found that bad smell detection and removal (§ III)
was met positively by the developers who acquired incentives
to create better code to prevent future problems, and thus
also saw the migration activities positively. ∼3600 tests were
written by developers and 680 by analysts, to aid maturity and
comprehension of the legacy system (§ IV). Finally, refactoring
out over 99% of 37405 GOTO statements (§ V), dramatically
increased readability of the code.

II. CONTEXT

mBank is one of the top banks in Poland with 5.3M cus-
tomers, 6.3% market share in loans and 5.9% market share in
deposits. It was founded in 1986 and was the first fully-digital
bank in Poland in 2000. Unlike many banks, mBank does not
extensively rely on customising existing software packages.
Instead, as a way of developing and maintaining competitive
advantage, since 2005 mBank software is internally developed

by several departments (300 FTE total). The codebase contains
both banking-specific packages and common packages (e.g.,
a CRM system) with a banking flavour. In this report we
focus on the modernisation of the CBS of the corporate branch
(∼22’000 clients), which is separate from the retail branch.

Client products come with hundreds of degrees of freedom,
stemming from different customer profiles: some only perform
end-of-month wages payments (a large set of simple low-
amount transactions, where a single failure is undesirable
but acceptable); others perform transactions with much larger
amounts, at unpredictable times, and failure or even delay in
processing any of them, means losing the client. Such different
profiles, the sheer number of features and the combinatorially
explosive number of possible interactions among them has
required extensive program management and manual testing.

Beyond day-to-day operations, the focus on customisability
also has an impact on long-term survivability of the software.
The major source of this impact is that 3MLOC of the core
banking software is written in a fourth generation language
(4GL) that we will call B, detailed to some extent below.

The platform developed at mBank is based on a MultiValue
database system [1], which is a data model predating relational
databases. In short, MultiValue databases can be viewed as
relational multidimensional databases where columns can hold
lists of values instead of only atomic values. There have been
multiple MultiValue databases available on the market, each
with its own set of tools and/or 4GLs to aid in development
of applications that use the database. For legal reasons, we
cannot disclose which product is in use at mBank, and call it
M. The following two elements of this system are relevant:

1) B is an imperative, dynamically typed 4GL with au-
tomatic memory management. It has structured pro-
gramming features like LOOP and FOR statements, plus
simpler control flow statements like GOTO and GOSUB.
It has strings, numbers and dynamically sized arrays.

2) U is a UI and application server that allows B programs
to communicate with a GUI written in a more modern
language through a stateful conversational telnet session.

The flexibility of M and simplicity of B allowed continual
product development for 20+ years by people of varying skill
sets, for different banks. As a consequence, the production
code is inconsistent, written by people who no longer work at
mBank, and is of varying quality.

Quality issues were made evident by an incident in produc-
tion on a vast scale, which caused the bank to stop processing
orders for several hours. There were multiple failures in the

mailto:Leszek.Wlodarski@mbank.pl
mailto:vadim@grammarware.net

system that compounded the original issue: inconsistencies in
the database. A postmortem analysis revealed that the root
cause was the multivalue nature of the database combined
with the lack of strong typing in the database and in B. This
allowed inconsistencies to be created by production B code of
dubious quality, causing a chain reaction down the line. This
incident led to the decision to migrate the complete system,
i.e., database and production code, to new technologies and
consider code quality [2] and technical debt [3] in the process.

Two major factors constrained possible migration routes: (1)
business and product development may not be frozen during
the migration; (2) experience present in other teams within
mBank needs to be put to good use. Thus, four different
options were considered to renovate the M system:

1) Migrate to another CBS. Lessons learnt by mBank
from the previous four migrations are that this would
not solve the current problem at hand, given the unique
nature of the software of the corporate branch.

2) Migrate to the CBS of the retail branch. It is
very desirable to migrate from two CBSs to just one,
but estimations showed this option to be so resource
intensive that it would block product development.

3) Upgrade to the newest version of M. While it would
somewhat modernise the CBS, again, the effort that it
entails would block product development.

4) Customised migration to a modern environment. This
option would be able to maintain the inherent value of
the system by keeping the resulting outside behaviour
identical. This process would then also consider address-
ing the technical debt that has been accumulated.

The decision made was to take the last option, with .NET
and C# as the target technologies since mBank has con-
siderable expertise there. It was also known from previous
migration projects how modern tools boost productivity and
integrability of new developers. It was made an explicit
requirement for all project parts to deliver benefits early on.

III. BAD SMELL DETECTION AND REMEDIATION

A source code analysis and transformation infrastructure for
B was developed by Raincode Labs at the start of the project.
Its first use was to perform bad smell detection, as an initial
way to locate and decrease technical debt. mBank developed
several bad smell detection components and integrated them
to the SonarQube [4] code quality dashboard, including:

• Simple dead code detection.
• Use of the GOTO statement.
• Variables that should be read-only are being assigned to.
• Variables are written but never read.
• Variable increment using the ++ postfix operator.
The last item begs further explanation. During the con-

struction of unit tests (§ IV), it was discovered that the ++
operator in B causes a loss of precision because it changes
the underlying integer value of the variable to a floating point
number. Thus, after a large number of mathematical operations
on these variables, their actual value drifts away from their

expected value. Hence, the use of ++ is declared a bad smell
in B, and mBank strives to remove it from its codebase.

After each commit, the bad smell detectors are run au-
tomatically and visualised in the dashboard. Smell removal
happened on an opportunistic basis in between more urgent
activities, and included adding unit tests and functional tests
before refactoring the code. The following lessons were learnt:

1) Bad smell detection forces developers to change their
approach on how to develop and maintain code by
adding the objective of producing good quality code (as
measured by a low number of bad smells).

2) Removing bad smells causes the developers to gain
more knowledge of the source code, since they need
to inspect code that they would otherwise not look at.
This knowledge was useful later in the project.

3) As bad smells indicate possible issues in the code,
removing them reduces possible issues in production.
This would reduce tedious maintenance tasks and free
up more resources for the migration project itself.

4) Improving the code quality before the transformation
leads to better code quality of the transformed code.
The prime example is GOTO (see § V–VI for details).

Developers are positive about the bad smell detection be-
cause they see it as a way to ensure their code has fewer
possible bugs. It potentially lowers the amount of tedious
maintenance work to be done in the future, and hence has
increased their project buy-in.

IV. ADDING UNIT AND FUNCTIONAL TESTS

Due to its architecture, U had scaling issues before this
project was started: UI apps could not execute queries con-
currently, disconnected sessions were freezing the app, etc. To
address this, a new UI and application serverW was developed
in C# that is stateless, focuses on scalability, and allows for
basic monitoring and diagnostics.W is now in production and
internal client GUIs are rewritten to take advantage of it.

Because W no longer uses a conversational-style stateful
interaction model between B programs and the UI, it was
demonstrated early on in the project that B code needed to
be refactored to correctly interface with W . This need for
refactorings then placed an emphasis on the issue of the
absence of any (automated) testing framework or rigorous
testing culture. To address this need, two different testing
frameworks have been developed at mBank: one for unit tests
and one for functional tests:

1) The unit testing framework of mBank was developed in
C#: developers add structured comments to their B code,
which serve as annotations, specifying inputs, outputs,
assertions, etc. The mBank developers were happy to use
the framework once it was introduced, and the number
of tests grows constantly (reached 3600 green unit tests
after one year). Originally planned as a refactoring aid
to introduce W , these tests have added extra value on
their own. Issues in production now almost exclusively
occur in code not yet covered by unit tests.

FOR goto IN Tools.GetGotoStatements(ROOT) {
loop := FIRST s IN goto.Ancestors() WHERE s IS LoopStatement OR s IS ForStatement;
IF loop != VOID {

label := goto.Target.Ref();
IF label == loop.Statements[LAST]

OR (label IS LoopStatement AND label == loop.Statements[0])
OR (label IS LoopStatement AND label.NextStatement == loop) {

Tools.ReplaceStatement(goto, "CONTINUE");
} } }

Fig. 1. Core of the specification of the GotoInLoopToContinue refactoring.

2) The functional test tool was targeted at analysts who can
specify workflows with inputs and outputs expected at
different stages. Automating this process removed the
natural limitations on the number of tests, and in the
first year they wrote 680 different functional tests, with
a constantly raising rate of creation. A typical example
of a problem that only was solved with functional
tests were several kinds of deadlocks we found and
removed thanks to them — deadlocked programs frozen
in production get restarted by system administrators
too promptly to analyse the causes. Beyond enabling
bugfixes, another obvious consequence was knowing
exactly which bugs are present before migration and
hence are not introduced by the migration process.

This work has had an immediate pay-off: code in produc-
tion became better tested and documented, new bugs were
discovered, isolated and fixed. Both developers and analysts
have reaped the benefits from these frameworks which has
increased their support for the migration project. Now, after
the successful end of the project, developers are still actively
adding unit tests, while analysts are adding functional tests—it
has become a part of their process.

V. B TO B TRANSFORMATION

It is known from both the experience of Raincode Labs
and academic literature [5] that any language translation adds
an overhead to the generated code in terms of infrastructure
needed to emulate the functionality of the original language.
Hence, applying B to C# transformations directly would have
caused a code quality drop. To address this, we preceded them
with B to B refactorings that improve the initial code quality.
The framework used to implement them is a proprietary
technology developed at Raincode Labs to support B. It works
similarly to existing open-source alternatives such as ASF [6],
TXL [7], Stratego [8] or Rascal [9].

One of the often used constructs in B is unstructured GOTO,
which does not exist in C# and has to be crudely emulated,
piling the emulating infrastructure on top of an already con-
demned practice [10]. Yet, B does support several structured
programming constructs: FOR...REPEAT and LOOP...REPEAT
with both BREAK and CONTINUE, as well as GOSUB/RETURN
for visiting a subroutine and returning from it.

Refactoring 99.46% of all 37405 GOTO statements took
writing 40 transformations for different patterns of GOTO

usage—an example of one can be seen on Figure 1. A single
transformation took 20–340 LOC to specify, including com-
ments. Transformations were made to work collaboratively in
small steps: e.g., one could introduce a flag variable in order
to separate the point of decision making from the actual jump,
so that the actual GOTO statement can be picked up by another
transformation to be turned into a CONTINUE.

VI. B TO C# TRANSFORMATION

C# does have a goto statement, but it is missing support
for B features of GOTO that are essential to us (e.g., it is not
possible to goto out of a loop in C#). Hence, we had to
develop our own emulation of B-style GOTO in C# to handle
the 203 remaining GOTO statements in the B code. Hopefully
this section can give an indication of the complexity of the
resulting code if we had not performed the cleanup of GOTO,
and how it would have impacted the code after migration.

In the spirit of making transformation steps as simple as
possible, the overall transformation strategy of B to C# is to
perform a one-to-one statement translation, also known as the
syntax swap [5]. The architecture of the transformation is a
depth-first traversal over the abstract syntax tree, where for
each kind of node in the tree there is a translation to their
equivalent C# statement. This architecture allows for easy
testing and debugging of the translation since a statement in
the produced C# code is easily traceable to a statement in the
B code and a specific part of the translation.

Each transformation from B to C# takes from one line
to almost a thousand lines. The simplest ones are arithmetic
operations since they are conceptually identical in B and C#.
Built-in DSL features of B, like opening a file, are translated
to appropriate library calls, which are collected into a separate
runtime library shipped together with the compiled code.
Essentially this runtime represents the language difference:
features native to B but not included in C#.

The only exception from the one-to-one paradigm is the
treatment of the remaining GOTOs, since they cannot be
deconstructed to mere library calls. We address them in a two-
part process: (1) moving labels outside nested control flow
constructs, and (2) splitting code in methods and adding a
control flow dispatch manager. For the former step, we make
sure labels only live on the outmost level of the AST: for
example, if there is a label inside an IF, we move it and all
the statements following it, outside of the IF, add another

IF [x] THEN IF [x] THEN
[a] [a]

GOTO L1
L1:
[b]

ELSE ELSE
[c] [c]

END END
NewLabel:

[d] [d]
L1:

[b]
GOTO NewLabel

Fig. 2. Illustration of code changes for bubbling a label out of an IF Left:
before, right: after. Note the additional two GOTOs and label.

NewForLabel:
FOR i = x TO y i = x

IF i > y THEN
GOTO NewEndFor

END
[a] [a]
L1: L1:
[b] [b]

i++
END GOTO NewForLabel

NewEndFor:

Fig. 3. Illustration of code changes for bubbling a label out of an FOR Left:
before, right: after. Note how the FOR is removed.

label after the END and add two GOTO statements to preserve
the control flow (Figure 2). FOR loops are destroyed by this
transformation, and become IFs with GOTOs (Figure 3).

Bubbling labels up to the root of the AST has an negative
impact to code quality: it adds more GOTO statements and
destroys some structured loops. However, it is unavoidable
since C# is an structured OO language that does not have
anything even remotely resembling unstructured jumps to
arbitrary locations.

After all the labels are propagated out of code blocks,
they end up on the top level of the AST. Essentially, each
program becomes segmented by labels. To strengthen this
segregation, we traverse all such segments that do not end with
a GOTO, and add an explicit GOTO to the next segment (this
refactoring obviously preserves the semantics and degrades
the code quality further). Then, each segment is transformed
to a C# method which performs as usual for continuation-
passing style, returning the name of the label it used to transfer
control to. Lastly, we add a special dispatch method that calls
the “first” method, analyses its return value and keeps calling
other methods until the end label of the program is reached.

Handling of local subroutines with GOSUB conforms to
the same scheme: each GOSUB is translated to a call of the
dispatch method with the name of the subroutine label as an
argument. Thus, the B GOSUB call stack is recreated in C#

through dispatch method calls, and GOSUB and GOTO state-
ments can peacefully coexist (e.g., a GOTO into a subroutine
will result in eventually returning from it). A RETURN from
a subroutine is translated to returning a special label to the
dispatch method, to signal that the execution of the dispatch
method itself needs to terminate, ending the subroutine call.

Clearly, supporting this framework of GOTO dispatches adds
significant technical debt to the resulting C# code, since we
are essentially working against the language, bending it to do
things it was designed to help avoiding. Jumping outside the
loop results in introducing artificial control variables, segment-
ing the code in methods according to labels is not idiomatic—
these things decrease readability and thus maintainability of
the code. Besides possible maintenance problems, we may
experience problems at runtime as well, since using a dis-
patch method yields in runtime overhead and subroutine calls
now require two stack frames instead of one. We have not
performed any profiling or benchmarking yet to see whether
this problems will be of any significance in practice.

Let us recall that the initial codebase contained 37405 GOTO
statements and 94477 labels in 5921 programs (out of 14929).
Applying the B to C# transformations directly, increases the
numbers to 49422 GOTOs and 103348 labels, breaking the
code in correspondingly many methods. Instead, because of
our quality-first focus, we went down to 203 GOTOs in 24
programs, which became 499 GOTO statements after the label
lifting process (still a mere 1.3% of the original numbers).
The numbers show that without the quality-first focus, we
end up with 99 times more boilerplate LOC to handle the
infrastructure (returning to the dispatch method and calling
the segment method), and the code would have been split into
47% more sections.

VII. RELATED WORK

Given the context of this work being an industrial expe-
rience report, we restrict ourselves to merely listing related
areas of prior research and providing starting pointers to the
readers interested in the context of this work, instead of diving
into comparison of details.

One obviously related area with a substantial body of
research results accumulated over the last decades, is software
migration: of code, data [11], tools [12], tests [13], API [14],
etc. From our point of view, the most realistic industry-aware
overview of the field was provided by Terekhov and Ver-
hoef [5], and the most recent case study in migrating banking
software reported by Khadka et al. [15]. The software quality
aspect of migration of legacy software systems was discussed,
among others, by Matthes et al. [16]. Many challenges we
have faced in translating B to C#, were exactly the same
as the issues of translating COBOL to Ada [17], COBOL to
Java [18], [19] or PL/I to Java [20]. 4GL-related challenges
were recently listed by Zaytsev [21].

For bad smell detection we refer to their original def-
inition [22] and to a recent survey [23]. The concept is
broader than any particular smell such as dead code, clones
or GOTOs, and narrower than technical debt [3] which is a

metaphor for any hasted shipping of imperfect code with the
intention of eventually fixing it. Detecting and eliminating
smells for us was considerable and tedious work, but 4GLs
are nowhere nearly as challenging in that aspect as modern
dynamic languages like PHP [24] or JavaScript [25].

The “small step” iterative transformation of the source
code that we have explained in § V, is formalized as term
rewriting [26]. Our in-house developed DSL functions simi-
larly to other term rewriting implementations like mentioned
before [6], [7], [8], [9].

VIII. CONCLUSION

In this paper we have reported on the modernisation effort
of the central banking system (CBS) of the corporate branch
of mBank. In contrast to other projects treated at Raincode
Labs, in this effort the decision was made to first improve the
quality of the codebase, and after that engage in modernisation
work. We have shown how this upfront quality improvement
work has yielded positive results from the beginning of the
project on, and how it has enabled the modernised code to be
of orders of magnitude better quality than it would have been
without the quality improvement. By now the modernisation
project has successfully finished: the application server U
is in production, with both performance and scalability on
levels beyond satisfactory, the smell detectors and the testing
frameworks are in continuous daily use. The B code translated
to C# was gradually put in production, after some more work
on addressing the database and other issues we have no space
to discuss (it was related to preventing issues like the one
explained in the introduction, in the future).

Let us recall the three parts of this large project that we
were able to fit into the space for this text. First, we presented
language-specific bad smell detectors that are now run at each
commit, giving an incentive to the developers to improve
code quality continuously. The early pay-off here was that
code in production is cleaned up through routine everyday
development actions. Second, we talked about the unit testing
and functional testing frameworks that were needed to put
the new UI and application server in production. Measurable
early pay-offs of this part were the removal of existing bugs
in production software, such as program deadlocks. Third, we
talked about the code transformation itself, focusing on the
automatic removal of spaghetti code with GOTO statements.
We gave an outline of the code transformations that removed
99% of the 37405 GOTO statements, have shown how this code
is translated to a modern programming language, and argued
about the impact of choosing a not quality-first alternative.

Treating quality as a tool to enable migration has also
increased support for the project throughout the organisation.
Developers support the project because higher code quality
means less tedious maintenance work, and the new test frame-
work has significantly eases writing of tests. Analysts support
the project because the functional test framework gives them
enough freedom in the kind and amount of tests they write.
End users support the project because they have benefited early
on from new GUIs that were built as part of the project.

The impact of unresolved 499 GOTOs on code maintainabil-
ity was assessed to be acceptable. The resulting code is seen
as having much higher quality than the original system had,
all thanks to B to B refactorings developed within this project.
Had we not have improved the quality of the B code before
translating it to C#, the quality of the resulting C# code would
have been so low that it would be impossible to maintain in
practice (issues reported in this paper are not the only ones,
they are just used as examples). Improving code quality by
removing spaghetti code, among other issues, is what made
it possible for the code after translation to be maintainable.
The focus on first improving the quality of the code before
migrating it to another language was therefore crucial to a
successful migration effort.

REFERENCES

[1] D. B. Nelson, “Generalized Information Retrieval Language and System
(GIRLS),” Mar 1965.

[2] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative Evaluation of
Software Quality,” in ICSE. IEEE, 1976, pp. 592–605.

[3] W. Cunningham, “The WyCash Portfolio Management System,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[4] SonarSource, “SonarQube,” https://www.sonarqube.org, 2017.
[5] A. A. Terekhov and C. Verhoef, “The Realities of Language Conver-

sions,” IEEE Software, vol. 17, no. 6, pp. 111–124, Nov./Dec. 2000.
[6] J. A. Bergstra, J. Heering, and P. Klint, “The Algebraic Specification

Formalism ASF,” in Algebraic Specification. ACM Press, 1989.
[7] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider, “Grammar

Programming in TXL,” in SCAM. IEEE, 2002, pp. 93–104.
[8] E. Visser, “Stratego: A Language for Program Transformation Based on

Rewriting Strategies,” in RTA, ser. LNCS, vol. 2051. Springer, 2001.
[9] P. Klint, T. van der Storm, and J. J. Vinju, “EASY Meta-programming

with Rascal,” in GTTSE, ser. LNCS, vol. 6491. Springer, 2009.
[10] E. W. Dijkstra, “Go To Statement Considered Harmful,” CACM, vol. 11,

pp. 147–148, 1968.
[11] A. Meier, “Providing Database Migration Tools — A Practicioner’s

Approach,” in VLDB. Morgan Kaufmann, 1995, pp. 635–641.
[12] A. Ketata, C. Moreno, S. Fischmeister, J. H. Liang, and K. Czarnecki,

“Performance Prediction upon Toolchain Migration in Model-Based
Software,” in MoDELS. IEEE, 2015, pp. 302–311.

[13] A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “PESTO: A Tool for
Migrating DOM-Based to Visual Web Tests,” in SCAM. IEEE, 2014.

[14] A. Hora and M. T. Valente, “Apiwave: Keeping Track of API Popularity
and Migration,” in ICSME. IEEE, 2015, pp. 321–323.

[15] R. Khadka, A. Saeidi, S. Jansen, J. Hage, and G. P. Haas, “Migrating a
Large Scale Legacy Application to SOA,” in WCRE. IEEE, 2013.

[16] F. Matthes, C. Schulz, and K. Haller, “Testing & Quality Assurance in
Data Migration Projects,” in ICSM. IEEE, 2011, pp. 438–447.

[17] R. Gray, T. Bickmore, and S. Williams, “Reengineering COBOL systems
to Ada,” in 7th Software Technology Conference, 1995.

[18] H. M. Sneed, “Migrating from COBOL to Java,” in ICSM, 2010.
[19] H. M. Sneed and K. Erdös, “Migrating AS400-COBOL to Java: A

Report from the Field,” in CSMR. IEEE, 2013, pp. 231–240.
[20] H. M. Sneed, “Migrating PL/I Code to Java,” in CSMR, 2011.
[21] V. Zaytsev, “Open Challenges in Incremental Coverage of Legacy

Software Languages,” in PX/17.2. ACM, 2017, pp. 1–6, PDF.
[22] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code. Addison-Wesley, 1999.
[23] T. Sharma and D. Spinellis, “A Survey on Software Smells,” Journal of

Systems and Software, vol. 138, pp. 158–173, 2018.
[24] H. Boomsma, B. V. Hostnet, and H.-G. Groß, “Dead Code Elimination

for Web Systems Written in PHP,” in ICSM. IEEE, 2012, pp. 511–515.
[25] N. G. Obbink, I. Malavolta, G. L. Scoccia, and P. Lago, “An Extensible

Approach for Taming the Challenges of JavaScript Dead Code Elimina-
tion,” in SANER. IEEE, 2018, pp. 391–401.

[26] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge
University Press, 1998.

https://www.sonarqube.org
http://grammarware.net/text/2017/coverage.pdf

	Introduction
	Context
	Bad Smell Detection and Remediation
	Adding Unit and Functional Tests
	B to B Transformation
	B to C# Transformation
	Related Work
	Conclusion
	References

