
Modelling Program Verification Tools
for Software Engineers

Sophie Lathouwers
University of Twente

Enschede, The Netherlands
s.a.m.lathouwers@utwente.nl

Vadim Zaytsev
University of Twente

Enschede, The Netherlands
vadim@grammarware.net

ABSTRACT
In software engineering, models are used for many different things.
In this paper, we focus on program verification, where we use mod-
els to reason about the correctness of systems. There are many
different types of program verification techniques which provide
different correctness guarantees. We investigate the domain of
program verification tools, and present a concise megamodel to
distinguish these tools. We also present a data set of almost 400
program verification tools. This data set includes the category of
verification tool according to our megamodel, practical informa-
tion such as input/output format, repository links, and more. The
categorisation enables software engineers to find suitable tools,
investigate similar alternatives and compare them. We also identify
trends for each level in our megamodel based on the categorisation.
Our data set, publicly available at https://doi.org/10.4121/20347950,
can be used by software engineers to enter the world of program
verification and find a verification tool based on their requirements.

CCS CONCEPTS
•General and reference→ Surveys and overviews; • Software
and its engineering → Formal software verification; • The-
ory of computation→ Logic and verification.

KEYWORDS
Formal Methods; Program Verification; Megamodelling.
ACM Reference Format:
Sophie Lathouwers and Vadim Zaytsev. 2022. Modelling Program Verifica-
tion Tools for Software Engineers. InACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems (MODELS ’22), October
23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3550355.3552426

1 INTRODUCTION
Program verification (PV) is a field that has always enjoyed very
high expectations, and suffered from them as well. Its objectives
are mostly to provide ways to prove that a system satisfies certain
requirements. The underlying techniques are typically based on
rigorous mathematical reasoning or an exhaustive analysis of the
state space, thereby giving software engineers stronger guarantees
than testing. It is often accepted that to use program verification

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ACM/IEEE
25th International Conference on Model Driven Engineering Languages and Systems
(MODELS ’22), October 23–28, 2022, Montreal, QC, Canada, https://doi.org/10.1145/
3550355.3552426.

(or formal methods in general), one needs to specify their system in
a formal notation and thus have considerable formal background
to do it in a correct and useful way [18].

To simplify, for the rest of the paper we use the established team
“program verification” to mean verification (conformance evalua-
tion) of programs (executable models). Hence, it covers generative
techniques, testing, model checking, theorem proving, etc, of source
code, automata, Petri nets, transition systems, etc.

Adopting verification tools has shown to present not only tech-
nical challenges, but also organisational, social and managerial
ones [22], similar to challenges faced by advanced model-driven en-
gineering tools [40]. PV tools are particularly difficult, because even
demonstrating potential benefits of their use is highly non-trivial
and relies on users having very specific knowledge of the underly-
ing techniques. For the tool developers, the tools themselves often
serve as a means to an end, as an opportunity to demonstrate the ex-
tent of applicability of their techniques, to exemplify the problems
that could possibly be tackled, and to enter an existing subdomain.
(Some subdomains are accompanied by sets of mature benchmarks
[6, 12, 36] which make comparing techniques by comparing tools a
very attractive and attainable goal). Thus, many tools stay in a pro-
totype phase, and being actively developed only till a certain point:
until the tool can handle the minimal set of benchmarks, or until
the deadline for submitting the paper explaining the underlying
techniques, or until graduating from a PhD project.

Besides techniques and tools, there are multiple sources of in-
formation to consider. Papers themselves are an obvious source,
well-archived on publishers’ websites, but requiring high qualifica-
tions to be considered readable and understandable. They are also
hard-dated, meaning that an average good paper contains detailed
comparison of the proposed tool with its existing counterparts, but
no comparison or relation to counterparts that were created after
the publication. The papers often refer to product or project pages,
which are prone not only to being outdated for reasons mentioned
above, but also to being removed due to the jobhopping nature of
the academic world: when the principal investigator finishes the
project and moves to another institution, it is not guaranteed that
the project page will be preserved by their original employer. If
available, such websites are also wildly varying in the nature of
their content: some literally repeat the contents of the papers, while
others complement it with valuable information, illustrations, and
links.

Another extremely valuable source of information — primarily
about the tools and not always about the techniques — is the code
repositories. It has become fairly commonplace in recent years to
either release the tools for (limited) public use to enable empirical
replicability, or expose the entire development history in a form of

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://doi.org/10.4121/20347950
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1145/3550355.3552426
https://doi.org/10.1145/3550355.3552426


MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Sophie Lathouwers and Vadim Zaytsev

versioned codebase (typically through git, occasionally hg or svn).
There are at least three benefits of repositories: (1) the artefacts
become much more tangible, and only require several natural steps
(like cloning the repository) to set themselves up on the user’s
computer instead of extracting them from the paper text; (2) the
version history is a technically substantiated claim to the amount
of work and to its authorship; and (3) linking tools to one another
by shared contributors plays the same social role as linking papers
by shared coauthors.

To summarise the problems:

• existing techniques are hard to understand and assess their
applicability without very deep specific knowledge;

• tools are hard to classify conceptually and appropriately
relate to techniques;

• information sources are dispersed, partly unavailable and
partly unreliable.

With the vision to open up the arsenal of PV tools and tech-
niques to a broader public of software modellers and, even broader,
software engineers, we have developed a megamodel of program
verification. The megamodel can help answering questions like
“what am I expected to provide as input to use tool X?” or “what
other tools exist for the same problem domain as tool X?”, or even
“when was the last time the code of tool X was updated?”. We will
elaborate on the megamodel and its PV0–PV6 levels in § 2.

With this megamodel, we show that there are many different
types of PV tools, and those types can be grouped in categories
that form a hierarchy. Thus, if a tool from one category comes
fundamentally short to solve the end user’s problems, it can be
considered to seek alternatives in a broader category. To concretise
the megamodel, we complete it with a data set into which we
have collected information about 420+ PV tools, frameworks and
languages, published recently at two top conferences in the PV
domain known for their tool paper hospitality: CAV and TACAS.
The data set is available publicly on GitHub, with a reader-friendly
interconnected hypertextual frontend at

https://slebok.github.io/proverb.
We strongly believe that making the data set freely accessible for
exploration, makes it an attractive starting point for software engi-
neers to traverse the domain of program verification. § 3 contains
more information about the data set, as well as our methods of
gathering the data, categorising and enhancing it.

In § 4, we report some preliminary lessons we have learned
ourselves by looking at the collected information, level by level,
and analysing some of its trends. Further work on enhancing the
data set by cross-referencing it with other collections of linked
data such as GitHub and DBLP, is ongoing, but the fact that our
megamodel splits the PV domain into distinct groups recognisable
from prior research, is considered here as a form of evaluation and
evidence that the megamodel is viable and useful.

When it comes to related work, we refer to in-depth overviews
of problems in adoption of program verification, formal methods,
model-driven engineering and domain-specific languages [15, 18,
19, 22, 32, 42, 53, 54, 67, 70, 74]. For the sake of this project, we
consider these problems relatively well-known and embrace the
fact that most of them are related to tools, their unavailability, low
prototypical quality and other concrete problems described above.

Over the years, many ontologies, taxonomies and surveys have
been published about program verification. However, these works
tend to target either a specific subset of program verification (e.g.
run-time verification [29], high-level synthesis [48]) or a specific
domain (e.g. vehicular domain [63], smart contracts [37], railway
system design [30]). Unlike these works, we do not focus on a
specific domain, but aim to deliver both a megamodel to explain
tools, as well as an easily accessible (and extensible!) repository
with a large data set of classified tools.

The work that is closest to ours is a report [58] that presents
several verification techniques in detail. It covers a broad variety of
techniques (model checking, verification condition generation and
correct-by-construction design). However, they only mention a few
tools per technique, whereaswe consider all kinds of published tools.
Nonetheless, this can also be a nice starting point for engineers.

When it comes to repositories, we also do not claim outright
novelty. Over the years, several projects have tried to achieve more
or less similar goals. For instance, the Verified Software Reposi-
tory [14] was intended to become a collection of tools, verified
programs, benchmarks and results. Unfortunately, it was last up-
dated in 2009. Schlick et al. [62] have also proposed to set up a
repository to make information about formal methods more acces-
sible. They propose a model for a possible repository which includes
information such as problem definitions, experiment data as well
as tools. However, to the best of our knowledge this repository
has not yet been instantiated, and remained a dream. Our work
could be used as part of such a repository, if anyone feels inclined
to combine their model with our data that matches specifically the
“Tool” part in their repository structure. Other directions for future
work and consequences of this project, are considered in § 5.

PV1 PV2

PV3

PV4

PV5

PV6

PV0

Figure 1: Each ellipse indicates the potential correctness
guarantees that can be acquired by using a tool of that level.
PV0 tools give the least guarantees of correctness, whereas
PV6 tools allow the user to work towards maximum correct-
ness guarantees. Note that these indicate the potential of
each level; a tool may only support a little piece of a level.

https://slebok.github.io/proverb


Modelling Program Verification Tools for Software Engineers MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

2 THE MEGAMODEL OF PV-LEVELS
In this section, we introduce the seven levels of our megamodel:
PV0,PV1,PV2,PV3,PV4,PV5 andPV6 (see Figure 1). Intuitively,
higher levels give the user more correctness guarantees, though
typically at the cost of more user effort, and lower level tools are
usually less strict and thus do not require as much PV expertise to
be effectively applicable.

Since the ultimate goal of PV is to prove correctness of the
artefact in some form and within some domain, we will use the
classic division of roles in a correctness proof. It was originally
introduced by Goldwasser, Micali and Rackoff in 1985 [33], we use
the more widespread modern terminology here:

Claim

Prover Verifier
argument

In short, there exists a claim of some sort (e.g., “𝑥 ∈ 𝑆” or
“the program has no memory leaks” or “all models are wrong”),
which is provided to both the prover and the verifier. The prover
is very clever and can perform sophisticated manipulations and
computations. Its goal is to produce arguments supporting the
claim, but the prover can also be biased and prone to producing
false positive arguments. The verifier has some way of checking
the arguments and, depending on its verdict, declaring the claim
accepted or rejected.Wewill be illustrating each of the PV tool levels
with explanations, examples and also differences on this simple
scheme. In the subsequent diagrams we will also use green colour
to highlight the main contributing elements that make someone
decide to use a tool of this particular level.

Artefact

PV0

[PV0] Software engineers always work with abstractions and
models of reality. Once a software entity satisfies the three proper-
ties of the modelling theory [65], it can be be seen as a model. These
three are the mapping property (elements of the model represent
some elements of the real entity being modelled), the reduction
property (only the most important aspects of the real entity are
being modelled and others are being abstracted from), and the prag-
matic property (the model has a purpose). Formal models are a
subset of such models, which are clean and well-formed, and of-
ten built with the use of some existing mathematical theories. For
example, formal models often cover domain-specific variations of
automata. In PV0, such a formal model may exist but it is often

implicit and is used neither to obtain nor to verify any correctness
guarantees.

Artefact

Solver

PV1

[PV1] Once a formal model can be operated on by a software
system, it can also be automatically checked for internal consis-
tency and well-formedness, by a model solver. For instance, if
the underlying theory states that a model of a process is some
specific automaton with one starting state and one or more final
states, and all transitions labelled with unique names, then a solver
can check that all these properties indeed hold. The more complex
the model, the more difficult it could be to make such a solver for
it: for example, uniqueness is relatively easy to check on strings
(which we assume for transition labels in our previous example),
but it is noticeably harder to define and enforce even on database
records, where single columns (such as “first name”) often contain
non-unique values, and combinations are often unreliable due to in-
completeness and subtle tolerable inconsistencies (such as a phone
number mismatch). From the correctness perspective, a PV1 tool
plays a role of a verifier, and a prover does not exist since the veri-
fier does not need any arguments on top of the ability to observe
the given model.

Artefact

Synthesiser

PV2

[PV2] The opposite situation is also commonplace: if a user
makes a model of their wishes, often taking a form of an almost-
consistent artefact with holes to be filled, then one can build a
tool to fill in those gaps and infer them from the context. Sources
of information can be different, ranging from domain common
sense (for example, we obviously want our parallel programs to not
get stuck waiting for one another’s resources) to constraints and
instructions explicitly specified by the user. In a sense, if we want
to consider the Eclipse Modelling Framework as a proof system,
it would fall into this category because it can produce the textual
code of classes that conform to the inheritance structure and the
interfaces specified in the class model. In PV, such programs are
often said to solve problems of synthesis and repair, and use
generative techniques to create test data, repair known categories
of defects, implement queries, generate neural networks fitting for
a particular grid, or just to configure a universal algorithm with
automatically obtained balanced values. PV2 tools help users to

https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv2.html


MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Sophie Lathouwers and Vadim Zaytsev

create software artefacts — either by generating them from scratch
or by providing significant assistance in the incremental process
of creating them semi-automatically. If the output of a PV2 tool is
expected to be processed by another automated component, then
the tool belongs on a higher PV level.

Artefact

&


Properties

Specification 
Provider Verifier

specification

PV3

[PV3] Combining the two components into a symmetric setup
(cf. Figure 1), in the simplest case we get a situation when a user
explicitly states what properties of a formal model they wish to
have (beyond well-formedness), and there is an automated prop-
erty checker, conceptually decomposable into two parts: a prover
that turns each property into a convincing argument and a verifier
which validates the convincing power of such arguments. A typical
example of a property checker allows the developers to add asser-
tions to their code, specifying preconditions, postconditions and
invariants around a code fragment, thus allowing additional formal
ways to validate its correctness. These assertions do not have to
be deployed to the end-user, but serve as a powerful tool for the
developer to verify the product beforehand. Some checkers have
a very extensive formal language to write properties in, usually a
variant of some special kind of logic (e.g., temporal logic [45, 57]).

Artefact

Specification


Property 
Generator Verifier

properties

PV4

[PV4] On the previous level, the burden to create verifiable
properties, was on the end-user of a tool: assertions had to be
explicitly written, and invariants had to be provided. However,
in some cases it is possible to automate the creation of desired
properties as well as their verification — since such techniques
require an extensive specification of the desired behaviour, and
often focus on only one paradigm, we call them monoverifiers.
They are very useful tools in debugging, because if used correctly,
they can significantly lower the chances of having a particular
category of defects, sometimes up to eliminating the very possibility
of such a defect ever occurring. For instance, think of a parallel
system being checked for deadlocks or a garbage collector checked
for the lack of memory leaks. Essentially, monoverifiers verify that
the supplied formal model corresponds to the expectations of their
own built-in specification.

Some monoverifiers offer a choice of checking one or more of
a larger set of correctness specifications, in which case we still

classify them to belong to PV4, even though the mono- prefix no
longer fits — as long as the end-user has no direct control over the
specifications themselves. Also most monoverifiers embrace the
fact that their generated properties cannot always cover the end-
user’s needs, and allow for direct manual specification of additional
properties — which allows us to claim that PV4 functionalities are
a strict superset of PV3 functionalities.

Artefact

Specification


Specification 
Compiler Verifier

properties
properties

PV5

[PV5] When the tool users have an opportunity or obligation
not only to specify which properties of the system to check for
or how to infer them, but also to build their own specifications,
we get to specification compilers. Such compilers usually have
a language used to write specifications in, sometimes based on
a domain-specific notation, and support this entire language by
compiling its instances in some automated way to verify their cor-
rectness and compatibility. With those, you can build your own
specifications of memory management strategies, your own com-
munication protocols, and so forth. To continue with examples
from the previous paragraph: when a PV4 tool could check for
deadlock freedom, a PV5 tool would require a formal specification
of the concurrency model, accompanied with a definition of what
constitutes a deadlock state. Obviously, some PV4 tools are built on
top of PV5 frameworks by essentially supplying a useful singular
model.

Artefact

Specification

Properties

Proof 
Assistant Verifier

proof

PV6

[PV6] If your program verification tool can not only handle
different specifications, but also infer correctness of the proof of the
needed property, then it belongs among the proof assistants. This
category is the most powerful one that we have encountered, which
means both that it is the hardest and most demanding to use, as well
as capable of producing the strongest guarantees. However, as one
can see from the diagram we provided, it bears some similarities
with the PV1 level, since there is very limited automation and tool
support in composing the arguments for correctness. The proof
needs to be written by the end-user, and the tool can only offer
some assistance in verifying that the proof is indeed correct. Some
of PV6 tools can feel to their users as if they also help them to
compose the steps of the proof, but under closer inspection this help
comes from the tool knowing which proof step would succeed in

https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html


Modelling Program Verification Tools for Software Engineers MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

Choose data
sources

Identify tools
in papers Collect data

Define/refine
megamodel Classify tools Identify trends

Figure 2: An overview of the different steps that have been undertaken to set up the data set of program verification tools.

reaching a user-stated goal, and not from the tool relying on some
generative algorithms. Within the claim/prover/verifier paradigm,
proof assistants offer powerful techniques on behalf of the verifier
and not the other two components.

3 DATA SET OF VERIFICATION TOOLS
To help users find a suitable PV tool, we have prepared a data
set of tools categorised according to the megamodel we have just
explained in § 2. The data set, called ProVerB, is available at1:

https://slebok.github.io/proverb/.
This section explains how the data set has been created (§ 3.1)

and presents some statistics about the data that was gathered (§ 3.2).

3.1 Methodology
A methodological overview can be seen in Figure 2. Below we will
describe each step of our research method in detail.

3.1.1 Choose data sources. To find PV tools to include in the data
set, we looked into two popular conferences about verification of
systems. Namely, the International Conference on Computer Aided
Verification (CAV) and the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).
In the CORE conference ranking they are classified as having re-
spective ranks of A* and A. We have decided to use papers from
these conferences since both accept and welcome papers about
tools. Therefore, we could expect a relatively high percentage of
tool papers. Moreover, CAV and TACAS started with artefact evalu-
ations in 2015 and 2018 respectively, therefore we expect that many
of the tools presented here will also be available. We have looked
at tool papers from TACAS 2016–2021 and all papers from CAV
2017–2021. We chose to use these recent years as this makes it more
probable that tools are still findable and possibly maintained, yet
still limited ourselves to the last 5 years of each conference in order
to gather a substantial amount of data.

This step resulted in 460 papers: 347 from CAV and 113 from
TACAS.

3.1.2 Identify tools in papers. Next, we read all the papers from
the selected conferences with the intent of identifying tools that
are presented in each paper. For each paper we checked whether it
contained a reference to a tool. If so, then we would tag this as one
of the following claims:

• Presents: the paper introduces a new tool;
• Extends: an existing tool gains new functionality in the
paper;

• Expands: the paper uses an existing tool as a basis for build-
ing another tool;

• Uses: the paper uses an existing tool for a case study or to
check the correctness of an approach.

1The data set has also been archived at https://doi.org/10.4121/20347950

We only included tools that provided some form of correctness
guarantees, to avoid including too many entries in ProVerB. This
still left us with some entries that were later reclassified as not
belonging to the PV domain (usually from misinterpretations of
claims “we use library X”).

3.1.3 Collect data. As a format for storing entries in the data set,
we have chosen Markdown. This provided the lowest entrance
barrier and maintenance cost, still combined with the opportunity
to add structure to the data (in our case, in the form of ####-level
sections). By choosing this format, we also hope to make it easy
for other people to contribute to the data set in the future, since
GitHub, our hosting platform for the data, even provides inline
editing functionality for Markdown pages.

After some pilot classifications we set up a generic template for
tool pages, which has proven to be quite resilient, and after the first
couple of sprints it stayed stable and unchanged till the current
moment. This template included a section for all the information
that we were interested in for a tool, namely:

• Name
• Domain or application field
• Self-identified type of the tool
• Input that is required from the user
• Input format
• Output that is produced
• Internal working of the tools, such as which tools it uses as
a backend

• External relations to other tools, such as those that were
compared to this tool in the paper

• Links to project pages, repositories and related papers
• Dates when the tool and its documentation were last updated

Next, we created a page based on this template for each tool
that was identified in the previous step, by reading a corresponding
paper and extracting the information.We also collected information
from the code base and project website if these were available. Some
sections were left empty if the data was not available (e.g., the last
modification data for tools without a repository). If at least two
tools referred to another tool, e.g. because it was used as a back end
or as a framework, then this tool was added as well and received
its own entry.

Some tools that we encountered were developed as prototypes,
up to the point that these did not have a name at all, nor a link to
an implementation. We decided to exclude such tools since it is
difficult to find information about a tool without a name. However,
some tools included an artefact, which was mostly still reliably
available, so we included this link in the entry whenever it existed.

Aside from the information mentioned above, we have also
started adding tags as textual annotations. Tags are used to indi-
cate whether a tool targets a specific language, domain, technique,
etc. This should make it easier for users to find suitable tools. For

https://slebok.github.io/proverb/
https://doi.org/10.4121/20347950


MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Sophie Lathouwers and Vadim Zaytsev

example, there is a tag for tools that target C programs, a tag for
neural networks, a tag for hardware verification, and so forth.

The data set also includes pages about several specification for-
mats. A page for a format was created if the format was not tool-
specific, if it was used by more tools than one, or if it was for some
other reason conceptually separate from the tool.

3.1.4 Define megamodel. When the tool pages had been written,
we contemplated the initial setup of the megamodel based on simi-
larities between tools. The first version was already based on the
input that the user has to provide, ranging from the no input at
all (besides the already existing software artefact), to assertions,
properties, specifications, theories and proofs. Several refinement
iterations later, based also on consulting the already available do-
main knowledge [33, 72], we have arrived at the version presented
previously in § 2.

3.1.5 Classify tools. Having designed the initial megamodel, we
started the process of classifying all the tools. Based on the tools’
semi-structured description (cf. § 3.1.3), we have assigned each to
a PV level. While doing that, we have also consistently provided
a short description motivating this classification by explaining
what the tool does. In that way, a tool with a description “verifies
properties of a user-specified memory model” was clearly placeable
at PV5, and the one with “checks user-specified properties and
memory-safety of C programs” was easily marked as deserving
PV4. To prevent misclassifications, the authors actively double
checked each other’s verdicts and had extensive discussions about
arguable conclusions.

Aside from the PV0–PV6 levels, there are two other categories:
“no PV” for false positives and “frameworks” for a possible level
mixture. We used “no PV” to explicitly exclude entries that ended
up, after close consideration, not performing any PV-related tasks.
Such entries were mostly about specification formats, but also about
IDE plugins, unrelated programming languages, libraries not per-
forming any PV tasks, etc. We felt that something like an alternative
user front end or a linear programming library do not belong to
PV0 either. “Frameworks” were used to classify collections of tools:
in many cases it was possible to determine the primary objective of
the collection and assign a framework to a proper level as well, but
in other cases such an assignment has not been deemed sensible.
For example, “Alloy” is used to refer to the Alloy Analyzer (which
has its own entry on PV3), or to the input level of the Alloy Ana-
lyzer, or to the entire ecosystem of Alloy models and their verifiers,
— and is not consistently PV-classifiable without disambiguation.

3.1.6 Identify trends. Finally, after we classified all the tools, we
could start to identify trends in each level of the megamodel. These
trends could be identified based on the short descriptions that were
written in the previous step, and require only occasional lightweight
double checkingwith the full data entry or the text of the underlying
paper. We will discuss these trends in more detail in § 4.

3.2 Data set statistics
The data set contains 384 tools, 25 specification formats and 66 tags.
The tools are split over the PV levels as follows:

• PV0: 16 — cf. § 4.1
• PV1: 88 — cf. § 4.2

• PV2: 82 — cf. § 4.3
• PV3: 68 — cf. § 4.4
• PV4: 99 — cf. § 4.5
• PV5: 14 — cf. § 4.6
• PV6: 13 — cf. § 4.7
• No PV: 44

Tools Prototypes No tool
CAV 228 (49%) 36 (8%) 89 (19%)
TACAS 94 (20%) 0 (0%) 19 (4%)
Overall 322 (69%) 36 (8%) 108 (23%)

Table 1: An overview of how many tools were identified in
the CAV and TACAS proceedings.

Table 1 gives an overview of how many tools were identified in
the CAV and TACAS proceedings respectively. The papers that pre-
sented unnamed prototypes were counted separately and excluded
from the data set. Papers that did not discuss any implementation,
such as theoretical papers or case studies, counted towards the “No
tool” column. Overall, 77% of the papers that we looked at included
some implementation, 69% of which were identifiable tools and 8%
were prototypes. We suspect the percentages to be considerably
lower, had we chosen other conferences without a strong tool focus.

The light snowballing principle that we have mentioned above
(another tool page is added if at least two existing entries refer to
the same tool which is not yet in the data set) led to adding another
62 tools to the data set.

We consider limitations of our data set and the process of creating
it, at the very end of the paper, in § 5.1.

4 TRENDS IN PV LEVELS
In this section we identify different subgroups within each PV level
of the megamodel.

4.1 PV0: Potential tools
At the time of writing of this paper, ProVerB had 16 tools on PV0. 13
of them provide facilities to work with various kinds of seemingly
formal artefacts: grammars, regular expressions, automata, deci-
sion diagrams, session types, and floating point numbers. However,
there is simply not enough formal rigour in the way these tools
operate these artefacts, for us to consider them truly a part of the
program verifier’s arsenal. As an example, consider ANTLR [55]:
given a grammar, it generates a parser for it. However, it does so
without the grammar being perceived, modelled and transformed as
a mathematical object. If the user provides ANTLR with a grammar
which is unconnected or ambiguous, then the generated parser will
be faulty.

Two remaining PV0 tools are, in fact, repositories: Ceramist [34]
and Prosa [35] are libraries that store formal artefacts (definitions
and proofs) but by themselves neither provide arguments about
their correctness, nor verify those (both rely on Coq). The last
PV0 tool is Smt-Switch [47], a collection of abstract classes that, if
inherited from and implemented, can help integrate SMT solvers—
again, this library by itself definitely is related to the PV domain,
but does not help bring any correctness guarantees.

https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv0.html


Modelling Program Verification Tools for Software Engineers MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

What all PV0 tools have in common is their position on the
verification diagram we have shown in § 2: they are claims without
arguments, without a prover and without a verifier. The claims can
be formal, but the surrounding context does not qualify as PV tool
support.

4.2 PV1: Essential tools
Out of 88 tools on the PV1 level, 18 can be seen as frameworks
enabling their end users to work with certain models/abstractions
in a formal way. For instance, Frama-C [20] contains functionality
to treat C programs as formal artefacts and thus can be used to build
different program analyses on top of it; BINSEC [24] provides simi-
lar functionality and opportunities to implement binary level code
analysis; there are comparable tools that deal with Büchi automata,
symbolic automata, decision diagrams, temporal logic formulae,
etc. 7 more tools could be seen as limited frameworks that are de-
veloped specifically to compare two models in a formal way. For
example, SPAN [9] computes whether two protocols are indistin-
guishable, and RABIT [1] checks inclusion of languages generated
by two Büchi automata. Another 6 tools can be seen as normalis-
ers that bring a given model to some well-defined canonical state:
Mealy machines and Büchi automata can be automatically min-
imised, quantified Boolean formulae can be simplified and turned
into dependency quantified Boolean formulae, etc.

21 different PV1 tools are linters, type checkers and checkers of
other kinds of properties that are fixed and hardcoded into the tool
(we will see checkers of user-specified properties on PV3). Such
properties can include conformance, semantic preservation, type
safety, automata emptiness, safety of Markov decision processes,
thread safety, etc. Reachability and termination analyses, due to
their internal workings, we count towards another category, which
includes metric calculators and tools that compute a set of possible
states of a model or infer ranking functions, or compute upper and
lower bounds of something — there are 30 of them in total.

Finally, the remaining 6 tools can execute models, simulate their
behaviour, (partly) visualise them and resolve them otherwise:
CabPy [7] solves a two-player reachability game, Oink [69] solves
a parity game, jcstress [64] and PROVER [61] execute test cases in
a specific order, CLEAR [8] and dtControl [5] visualise the problem-
atic part of a labelled transition system and previously externally
synthesised controller code, respectively.

4.3 PV2: Creational tools
There are 82 tools in PV2. The largest identifiable group, with 37
members, consists of tools providing correct-by-construction arte-
facts given a specification: some synthesise a controller from an LTL
formula, others generate a dynamic neural network for a given grid,
some generate tests for a given circuit, while others specifically
generate classes that attempt to violate given properties. This group
of tools can produce fairly formal artefacts that are automatically
verifiable, but they do not provide any verifier means themselves.
8 more tools perform limited versions of the same process, gener-
ating only enough content to fill in holes in an already partially
existing model or program. For instance, 𝜏-DIGITS [26] fills holes
in a given loop-free program from a probabilistic specification of its
desired behaviour, and MOVEC [21] performs aspect weaving. Two

more tools (DIGITS [2] and TarTar [43]) specifically propose re-
pairs as code fragments meant to substitute existing code fragments
assumed to be faulty.

The second popular group contains 19 tools that encode or
transform the artefact from one format or formalism to another.
This group covers tools for sequentialising parallel C code (MU-
CSeq [66]), or transforming irreversible programs into reversible
circuits (ReVerC [3]). There are several tools on this level that
operate on temporal logic formulae, making a timed automaton
(MightyL [17]) or an Electrum model (Cervino [56]) or another
temporal logic formula in a different dialect (MLTLconverter [46])
from them.

7 tools can be used to refine specifications: for instance, by in-
ferring type annotations from an untyped program such as Typ-
pete [38], or generating permission pre- and postconditions for
Viper programs like Sample [25] does.

Finally, 9 tools generate configurations or settings for other tools,
such as PeSCo [59] which generates the best fitting configuration
for CPAchecker [13] that fits previous experiences; or SATzilla [75]
that decides which solver to call per instance based on predictors.

4.4 PV3: Property checking tools
PV3 currently has 68 tools. Within PV3 we can clearly identify
three main subgroups: property checkers, assertion checkers and
program repair tools.

The first group consists of 36 tools that check properties for some
form of model such as automata or network models. For instance,
STAMINA [51] can be used to check properties of infinite-state
continuous-time Markov chains.

The second group consists of 27 tools that check assertions for
concrete artefacts. For example, SecC [27] can check information
flow properties, expressed as assertions, for C programs.

Three tools: Forester [39], SymDIVINE [50] and VeryMax [16] —
fall in between these two groups. The first two of these work on
LTL formulae as properties, but apply them on real C/C++ code
(SymDIVINE allows both “normal” assertions and LTL formulae).
VeryMax works both on programs (C/C++) and models (transition
systems).

Finally, there is also a small group of tools that focuses on pro-
gram repair: AllRepair [60] and NNRepair [68]. These tools both
identify faults in the program, like other tools in PV3, and they
also propose a way to fix it.

4.5 PV4: Specification checking tools
Currently, PV4 is the largest category with 98 tools. The largest
group (50) of tools within PV4 are the solvers. These tools pro-
duce a satisfiability result for SAT (satisfiability), SMT (satisfiabil-
ity modulo theories), QBF (quantified Boolean formulae) or CHC
(constrained Horn clauses) problems. Because these tools verify a
specific property (namely, satisfiability), one may have expected
to find them in PV1. However, these tools typically generate inter-
pretations for the given problem to show that it is (un)satisfiable.
So, internally each of these tools consists of two essential parts:
the property generator which generates the interpretation and
the verifier which checks whether this interpretation makes the
formula satisfiable. This group also contains the tool that is referred

https://slebok.github.io/proverb/pv0.html
http://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv3.html
http://slebok.github.io/proverb/pv2.html
http://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv3.html
http://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv1.html


MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Sophie Lathouwers and Vadim Zaytsev

to the most often in our data set — namely, Z3 [23]. It belongs to
SMT solvers together with 17 other tools; there are also 22 SAT
solvers; 3 CHC solvers; and 6 solvers of other kinds.

Many PV tools from other levels encode their problems into
satisfiability problems and then use one of the tools in this group
as a back end.

PV4 also includes 23 tools that generate properties or check built-
in specifications typically depending on the domain that the tool
targets. Some examples of built-in specifications that are checked,
include memory safety, data-race freedom, termination and absence
of runtime errors. Many of these tools also provide support to
check user-written properties. For instance, Gobra [73] can check
user-written assertions for Go programs as well as memory safety,
data-race freedom and crash safety.

Finally, there is a small group of what we can call language
workbenches [31], and we strongly suspect that there are more
of this kind that escaped our selection only because nobody pub-
lished about them directly at CAV and TACAS recently. A language
workbench was envisioned in 2005 as a set of tools aiding the lan-
guage engineer to design, implement and integrate a collection
of domain-specific languages into one unified solution. Some of
the popular language workbenches in model-driven software engi-
neering include Xtext, MPS, MetaEdit+, Rascal and Spoofax. The
two language workbenches that we have found mentioned for the
domain of program verification, were DLC [28], which can automat-
ically generate distributed implementation of concurrent systems
modelled in the LNT language, which can be verified using the
CADP toolbox; and PrDK [41], a development kit for programming
communication protocols.

4.6 PV5: Fully controlled verification tools
Continuing the same trend, on PV5 we see a uniform group of
14 verification workbenches. These are tools that allow users to
write their own specifications and combine these together with
desired properties into a formal mathematical representation. These
formal representations can then be compared with representations
of programs or their properties for the verification. Users can have
very fine-grained influence on the results of these tools because
they are allowed to write their own specification. For example,
Attestor [4] allows the user to specify the initial heap configuration
and the behaviour of the garbage collector that should be taken into
account when verifying a property for a Java program. Similarly,
UPPAAL [10] is a workbench for automatic verification of safety
and bounded liveness properties of real-time systems modelled as
networks of timed automata.

4.7 PV6: Proving tools
All 13 tools in PV6 are proof workbenches. Many of the tools in
previous categories give a yes/no answer to indicate whether a
property holds, and in any case allowing at most some influence on
the property generating and handling process, but not on the final
proof. PV6 tools, however, will help the user to construct and infer
the correctness of a proof that showswhy a property is true or false.
Some well known tools in PV6 are Coq [11], Isabelle/HOL [52],
Lean [49] and Vampire [44]. Their comparison is a highly nontrivial
task even for professional mathematicians [71].

5 CONCLUSION & FUTUREWORK
Our contribution of this paper is two-sided. On one side, we have
analysed a fairly complex domain and turned one of the commonly
used visualisation of its core processes into a full fledgedmegamodel
that helped us to split the domain into much more intelligible
smaller categories. On the other side, we have processed hundreds
of academic papers published across several recent years, classified
them according to the proposed megamodel and generated a user-
friendly website allowing software engineers to compare and assess
papers in a bit more secure, complete and safe way than before.

The megamodel that we have presented, identifies the different
type of program verification tools that we found existing or that can
possibly be made to exist. This megamodel is based on the classic
division of roles in a correctness proof as introduced by Goldwasser
et al. [33] that is currently accepted by the computational com-
munity. Our megamodel divides the different types of tools into
seven categories: PV0, PV1, PV2, PV3, PV4, PV5 and PV6. These
categories are increasingly more demanding and increasingly more
powerful: it is possible to gain some benefit from a PV0 or PV1
tool within the first day of being introduced to it, but much further
refinement and improvement might not be possible; on the other
side of the spectrum, PV6 tools can do almost everything, and re-
quire a relevant PhD degree to operate. Thus, there is no discussion
on “what is the best PV level”, just a classification that helps to
match a tool to customer needs.

To bring the megamodel to life, we have designed a metamodel
to hold semi-structured information about a PV tool, including
its PV-level, name, input/output, etc, and instantiated it for all
tools that we have found being mentioned and used in the last five
years of two top conferences in the field: CAV and TACAS. Our
data set at the time of writing consists of 420+ tools, formats and
libraries. By setting up a megamodel as well as a dataset, we hope
to provide both a theoretical as well as a practical starting point
to get into the world of PV tools and methods. A good starting
point for browsing and exploring ProVerB would be its hypertext
frontend: http://slebok.github.io/proverb/ which also contains links
to other sites (GitHub, DOIs, etc) for each tool.

One of the most important things to consider for the future is
how to keep the data set up to date. To achieve this, we think that it
is essential that other users can easily contribute to the project, e.g.
through pull requests. It would also be nice to further extend the
data set, e.g. by including other conferences.We are actively looking
into APIs of related linked data repositories to extend the data set
and automatically update information such as the timestamp of the
last commit.

5.1 Threats to validity
Conclusion validity. All the PV-classifications that we have per-
formed, come from our personal interpretations of the contents of
a fairly large body of fairly complex academic papers. Thus, it is
possible that some tools have been misclassified as belonging to
one level while they actually belong to another level. To prevent
misclassifications, the authors were actively double checking each
other’s verdicts and had extensive discussions about arguable con-
clusions. Eventually we plan to reach out to authors of all tools
included in ProVerB individually, with a detailed explanation of the

https://slebok.github.io/proverb/pv4.html
http://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv5.html
http://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv2.html
https://slebok.github.io/proverb/pv3.html
https://slebok.github.io/proverb/pv4.html
https://slebok.github.io/proverb/pv5.html
https://slebok.github.io/proverb/pv6.html
https://slebok.github.io/proverb/pv0.html
https://slebok.github.io/proverb/pv1.html
https://slebok.github.io/proverb/pv6.html
http://slebok.github.io/proverb/


Modelling Program Verification Tools for Software Engineers MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

seven PV levels and a request to review our summaries and refine
them, possibly leading to reclassifications. If such a community ef-
fort causes a noticeable resonance, it would be possible to eliminate
this threat entirely.

Internal validity. Since our project is more of an observational
and classificational nature, and we do not attempt to establish
any causal relationships, internal validity is not among our major
concerns. Once we start enhancing the data set with other sources
of linked data (such as GitHub and SpringerLink API), it might
become more relevant to correctly establish contributor identity
equivalence across multiple platforms with varying usernames and
non-strictly matching names.

Construct validity. As we have explained in § 2, our megamodel
was designed based on the classic division of roles in a correct-
ness establishing setup as described by Goldwasser, Micali and
Rackoff [33], in the modern reinterpretation by Wigderson [72]. By
reusing a model that originates from the right domain, we hope
to have found a mature foundation that will allow us to classify
any possible tool in the future by matching its components and
concepts to the claim, the prover, the arguments and the verifier.
Only if we encounter future tools that do not fit into this model,
will we have to redesign the megamodel again. However, in the
works of Wigderson [72], generalising the notion of a proof from
being a unidirectional communication from the prover towards
the verifier, to a bidirectional series of communications, handling
interactivity, errors, randomness and other natural aspects of com-
putation, has opened a lot of doors and led to the discovery of a
number of complexity classes with a distinctly higher expressive
power. For instance, relying on more than two verifiers at the same
time is not uncommon in PV, but this is mostly done for practical
considerations such as trying all available ones to watch only the
fastest complete its proof. It is neither considered nor suspected
that multi-prover or multi-oracle PV tools can lead us to a broader
computational class. Since this has not been researched or estab-
lished before, we also do not consider such multi-tier setups as one
of the PV-levels explicitly.

External validity. We have gathered data from publications at
CAV and TACAS, which seemed like a good choice of information
since both favour papers about program verification tools to non-
tool papers and non-PV content. However, there are more venues
that target the program verification field (POPL, PLDI, FASE, LICS,
etc). It is unknown at the moment what biases we have created
in the data set by limiting ourselves to only CAV and TACAS and
related papers, techniques and tools. While limited, the number
of tools (380+) included is significant, and they seem reasonably
spread out among the different PV levels. We see that the most
popular tools are included, partly because we also include tools if
they are referred to by at least two other tools. So, while perhaps
limited, we think that this is a good starting point for the data set.

REFERENCES
[1] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-

Duo Hong, Richard Mayr, and Tomáš Vojnar. 2010. Simulation Subsumption in
Ramsey-Based Büchi Automata Universality and Inclusion Testing. In Proceedings
of the 22nd International Conference on Computer Aided Verification (CAV), Tayssir
Touili, Byron Cook, and Paul Jackson (Eds.). Springer, 132–147. https://doi.org/
10.1007/978-3-642-14295-6_14

[2] Aws Albarghouthi, Loris D’Antoni, and Samuel Drews. 2017. Repairing Decision-
Making Programs Under Uncertainty. In Proceedings of the 29th International
Conference on Computer Aided Verification (CAV), Rupak Majumdar and Viktor
Kunčak (Eds.). Springer, 181–200. https://doi.org/10.1007/978-3-319-63387-9_9

[3] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Verified Compilation
of Space-Efficient Reversible Circuits. In Proceedings of the 28th International
Conference on Computer Aided Verification (CAV), Rupak Majumdar and Viktor
Kunčak (Eds.). Springer, 3–21. https://doi.org/10.1007/978-3-319-63390-9_1

[4] Hannah Arndt, Christina Jansen, Joost-Pieter Katoen, Christoph Matheja, and
Thomas Noll. 2018. Let this Graph Be Your Witness!. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), Hana Chockler
and Georg Weissenbacher (Eds.). Springer, 3–11. https://doi.org/10.1007/978-3-
319-96142-2_1

[5] Pranav Ashok, Mathias Jackermeier, Jan Křetínský, Christoph Weinhuber, Maxi-
milian Weininger, and Mayank Yadav. 2021. dtControl 2.0: Explainable Strategy
Representation via Decision Tree Learning Steered by Experts. In Tools and Algo-
rithms for the Construction and Analysis of Systems, Jan Friso Groote and KimGuld-
strand Larsen (Eds.). Springer, Cham, 326–345. https://doi.org/10.1007/978-3-
030-72013-1_17

[6] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Ben-
jamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, GeoffreyWashburn, Stephanie
Weirich, and Steve Zdancewic. 2005. Mechanized Metatheory for the Masses:
The PoplMark Challenge. In Proceedings of the 18th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs) (LNCS, Vol. 3603), Joe Hurd and
Thomas F. Melham (Eds.). Springer, 50–65. https://doi.org/10.1007/11541868_4

[7] Christel Baier, Norine Coenen, Bernd Finkbeiner, Florian Funke, Simon Jantsch,
and Julian Siber. 2021. Causality-Based Game Solving. In Computer Aided Verifi-
cation, Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, Cham, 894–917.
https://doi.org/10.1007/978-3-030-81685-8_42

[8] Gianluca Barbon, Vincent Leroy, and Gwen Salaün. 2019. Debugging of Be-
havioural Models with CLEAR. In Tools and Algorithms for the Construction and
Analysis of Systems, Tomáš Vojnar and Lijun Zhang (Eds.). Springer, 386–392.
https://doi.org/10.1007/978-3-030-17462-0_26

[9] Matthew S. Bauer, Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan.
2018. Model Checking Indistinguishability of Randomized Security Protocols.
In Computer Aided Verification (CAV), Hana Chockler and Georg Weissenbacher
(Eds.). Springer, 117–135. https://doi.org/10.1007/978-3-319-96142-2_10

[10] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
1996. UPPAAL: A Tool Suite for Automatic Verification of Real-Time Systems. In
Hybrid Systems III, Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag
(Eds.). Springer, 232–243. https://doi.org/10.1007/BFb0020949

[11] Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Springer Berlin,
Heidelberg, London.

[12] Dirk Beyer. 2022. Progress on Software Verification: SV-COMP 2022. In Tools
and Algorithms for the Construction and Analysis of Systems, Dana Fisman and
Grigore Rosu (Eds.). Springer, Cham, 375–402.

[13] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable
Software Verification. In Computer Aided Verification, Ganesh Gopalakrishnan
and Shaz Qadeer (Eds.). Springer, 184–190.

[14] Juan Bicarregui, C. A. R. Hoare, and J. C. P.Woodcock. 2006. The Verified Software
Repository: A Step Towards the Verifying Compiler. Formal Aspects of Computing
18, 2 (2006), 143–151. https://doi.org/10.1007/s00165-005-0079-4

[15] Jean-Paul Bodeveix, Mamoun Filali, Julia Lawall, and Gilles Muller. 2005. Formal
MethodsMeet Domain Specific Languages. In Proceedings of the Fifth International
Conference on Integrated Formal Methods (iFM) (LNCS, Vol. 3771), Judi Romijn,
Graeme Smith, and Jaco van de Pol (Eds.). Springer, 187–206. https://doi.org/10.
1007/11589976_12

[16] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliveras, Enric
Rodríguez-Carbonell, and Albert Rubio. 2017. Proving Termination Through
Conditional Termination. In Tools and Algorithms for the Construction and Analysis
of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer, 99–117.

[17] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. 2017.
MightyL: A Compositional Translation from MITL to Timed Automata. In Com-
puter Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer,
421–440.

[18] Guy H. Broadfoot and Philippa J. Broadfoot. 2003. Academia and Industry Meet:
Some Experiences of Formal Methods in Practice. In Proceedings of the 10th
Asia-Pacific Software Engineering Conference (APSEC). IEEE Computer Society,
49. https://doi.org/10.1109/APSEC.2003.1254357

https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1007/978-3-319-96142-2_1
https://doi.org/10.1007/978-3-319-96142-2_1
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/978-3-030-72013-1_17
https://doi.org/10.1007/11541868_4
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-17462-0_26
https://doi.org/10.1007/978-3-319-96142-2_10
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/s00165-005-0079-4
https://doi.org/10.1007/11589976_12
https://doi.org/10.1007/11589976_12
https://doi.org/10.1109/APSEC.2003.1254357


MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Sophie Lathouwers and Vadim Zaytsev

[19] Antonio Bucchiarone, Federico Ciccozzi, Leen Lambers, Alfonso Pierantonio,
Matthias Tichy, Massimo Tisi, Andreas Wortmann, and Vadim Zaytsev. 2021.
What is the Future of Modelling? IEEE Software Insights (IEEE Software) 38 (2021),
119–127. Issue 2. https://doi.org/10.1109/MS.2020.3041522

[20] Géraud Canet, Pascal Cuoq, and Benjamin Monate. 2009. A Value Analysis for C
Programs. InNinth IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21, 2009.
IEEE Computer Society, 123–124. https://doi.org/10.1109/SCAM.2009.22

[21] Zhe Chen, Zhemin Wang, Yunlong Zhu, Hongwei Xi, and Zhibin Yang. 2016.
Parametric Runtime Verification of C Programs. In Tools and Algorithms for the
Construction and Analysis of Systems, Marsha Chechik and Jean-François Raskin
(Eds.). Springer, 299–315.

[22] Jennifer A. Davis, Matthew A. Clark, Darren D. Cofer, Aaron Fifarek, Jacob
Hinchman, Jonathan A. Hoffman, Brian W. Hulbert, Steven P. Miller, and Lucas G.
Wagner. 2013. Study on the Barriers to the Industrial Adoption of Formal Methods.
In Proceedings of the 18th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS) (LNCS, Vol. 8187), Charles Pecheur and Michael Dierkes
(Eds.). Springer, 63–77. https://doi.org/10.1007/978-3-642-41010-9_5

[23] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (LNCS, Vol. 4963), C. R.
Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/10.
1007/978-3-540-78800-3_24

[24] Adel Djoudi and Sébastien Bardin. 2015. BINSEC: Binary Code Analysis with
Low-Level Regions. In Proceedings of the 21st International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (LNCS,
Vol. 9035), Christel Baier and Cesare Tinelli (Eds.). Springer, 212–217. https:
//doi.org/10.1007/978-3-662-46681-0_17

[25] Jérôme Dohrau, Alexander J. Summers, Caterina Urban, Severin Münger, and
Peter Müller. 2018. Permission Inference for Array Programs. In Computer Aided
Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer, 55–74.

[26] Samuel Drews, Aws Albarghouthi, and Loris D’Antoni. 2019. Efficient Synthesis
with Probabilistic Constraints. In Proceedings of the 30th International Confer-
ence on Computer Aided Verification (CAV), Isil Dillig and Serdar Tasiran (Eds.).
Springer, 278–296. https://doi.org/10.1007/978-3-030-25540-4_15

[27] Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent Separation
Logic. InComputer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer,
208–230.

[28] Hugues Evrard. 2016. DLC: Compiling a Concurrent System Formal Specification
to a Distributed Implementation. In Tools and Algorithms for the Construction and
Analysis of Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer,
553–559. https://doi.org/10.1007/978-3-662-49674-9_34

[29] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. 2021. A Taxonomy
for Classifying Runtime Verification Tools. International Journal on Software Tools
for Technology Transfer 23, 2 (2021), 255–284. https://doi.org/10.1007/s10009-
021-00609-z

[30] Alessio Ferrari, Franco Mazzanti, Davide Basile, Maurice H. ter Beek, and Alessan-
dro Fantechi. 2020. Comparing Formal Tools for System Design: A Judgment
Study. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering (ICSE ’20). Association for Computing Machinery, 62–74.
https://doi.org/10.1145/3377811.3380373

[31] Martin Fowler. 2005. Language Workbenches: The Killer-App for Domain
Specific Languages? MartinFowler.com. https://martinfowler.com/articles/
languageWorkbench.html

[32] Georg Frey and Lothar Litz. 2000. Formal Methods in PLC Programming. In
Proceedings of the International Conference on Systems, Man & Cybernetics: "Cyber-
netics Evolving to Systems, Humans, Organizations, and their Complex Interactions".
IEEE, 2431–2436. https://doi.org/10.1109/ICSMC.2000.884356

[33] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge
Complexity of Interactive Proof-Systems. In Proceedings of the Seventeenth An-
nual ACM Symposium on Theory of Computing (SToC) (STOC). Association for
Computing Machinery, 291–304. https://doi.org/10.1145/22145.22178

[34] Kiran Gopinathan and Ilya Sergey. 2020. Certifying Certainty and Uncertainty
in Approximate Membership Query Structures. In Computer Aided Verification
(CAV), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 279–303. https:
//doi.org/10.1007/978-3-030-53291-8_16

[35] Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong Shao. 2019.
Integrating Formal Schedulability Analysis into a Verified OS Kernel. In Computer
Aided Verification (CAV), Isil Dillig and Serdar Tasiran (Eds.). Springer, 496–514.
https://doi.org/10.1007/978-3-030-25543-5_28

[36] Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and Enno
Ruijters. 2019. The Quantitative Verification Benchmark Set. In Proceedings of
the 25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (LNCS, Vol. 11427), Tomás Vojnar and Lijun Zhang
(Eds.). Springer, 344–350. https://doi.org/10.1007/978-3-030-17462-0_20

[37] Dominik Harz and William J. Knottenbelt. 2018. Towards Safer Smart Contracts:
A Survey of Languages and Verification Methods. CoRR abs/1809.09805 (2018),
20. arXiv:1809.09805 http://arxiv.org/abs/1809.09805

[38] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. 2018. MaxSMT-
Based Type Inference for Python 3. In Computer Aided Verification, Hana Chockler
and Georg Weissenbacher (Eds.). Springer, 12–19.

[39] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, Jiří Šimáček, and
Tomáš Vojnar. 2017. Forester: From Heap Shapes to Automata Predicates. In
Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay
and Tiziana Margaria (Eds.). Springer, 365–369.

[40] John Edward Hutchinson, Jon Whittle, and Mark Rouncefield. 2014. Model-
Driven Engineering Practices in Industry: Social, Organizational and Managerial
Factors that Lead to Success or Failure. Science of Computer Programming 89
(2014), 144–161. https://doi.org/10.1016/j.scico.2013.03.017

[41] Sung-Shik T. Q. Jongmans and Farhad Arbab. 2016. PrDK: Protocol Programming
with Automata. In Tools and Algorithms for the Construction and Analysis of
Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer, 547–552.
https://doi.org/10.1007/978-3-662-49674-9_33

[42] René Klösch and Wolfgang Eixelsberger. 1999. Challenges and Experiences in
Managing Major Software Evolution Endeavours Such as Euro Conversion or
Y2000 Compliance. In Proceedings of the 15th International Conference on Software
Maintenance (ICSM). IEEE Computer Society, 161–166. https://doi.org/10.1109/
ICSM.1999.792600

[43] Martin Kölbl, Stefan Leue, and Thomas Wies. 2020. TarTar: A Timed Automata
Repair Tool. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang
(Eds.). Springer, 529–540.

[44] Laura Kovács and Andrei Voronkov. 2013. First-Order Theorem Proving and
Vampire. In Computer Aided Verification, Natasha Sharygina and Helmut Veith
(Eds.). Springer, 1–35.

[45] Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems (ToPLaS) 16, 3 (1994), 872–923. https:
//doi.org/10.1145/177492.177726

[46] Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier. 2019. Satisfiability Checking for
Mission-Time LTL. In Computer Aided Verification, Isil Dillig and Serdar Tasiran
(Eds.). Springer, 3–22.

[47] Makai Mann, Amalee Wilson, Yoni Zohar, Lindsey Stuntz, Ahmed Irfan, Kristo-
pher Brown, Caleb Donovick, Allison Guman, Cesare Tinelli, and Clark W. Bar-
rett. 2021. Smt-Switch: A Solver-Agnostic C++ API for SMT Solving. In SAT
2021 (LNCS, Vol. 12831), Chu-Min Li and Felip Manyà (Eds.). Springer, 377–386.
https://doi.org/10.1007/978-3-030-80223-3_26

[48] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt.
2012. An overview of today’s high-level synthesis tools. Des. Autom. Embed. Syst.
16, 3 (2012), 31–51. https://doi.org/10.1007/s10617-012-9096-8

[49] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and
Programming Language. In Proceddings of the 28th International Conference on
Automated Deduction (CADE), André Platzer and Geoff Sutcliffe (Eds.). Springer,
625–635. https://doi.org/10.1007/978-3-030-79876-5_37

[50] Jan Mrázek, Petr Bauch, Henrich Lauko, and Jiří Barnat. 2016. SymDIVINE: Tool
for Control-Explicit Data-Symbolic State Space Exploration. In Model Checking
Software, Dragan Bošnački and Anton Wijs (Eds.). Springer, 208–213.

[51] Thakur Neupane, Chris J. Myers, Curtis Madsen, Hao Zheng, and Zhen Zhang.
2019. STAMINA: STochastic Approximate Model-Checker for INfinite-State
Analysis. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.).
Springer, 540–549.

[52] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson (Eds.). 2002. 5. The
Rules of the Game. Springer, 67–104. https://doi.org/10.1007/3-540-45949-9_5

[53] Arif Nurwidyantoro, Mojtaba Shahin, Michel Chaudron, Waqar Hussain, Harsha
Perera, Rifat Ara Shams, and Jon Whittle. 2021. Towards a Human Values
Dashboard for Software Development: An Exploratory Study. In Proceedings of the
15th International Symposium on Empirical Software Engineering and Measurement
(ESEM), Filippo Lanubile, Marcos Kalinowski, and Maria Teresa Baldassarre (Eds.).
ACM, 23:1–23:12. https://doi.org/10.1145/3475716.3475770

[54] Arif Nurwidyantoro, Mojtaba Shahin, Michel R. V. Chaudron, Waqar Hussain,
Rifat Ara Shams, Harsha Perera, Gillian Oliver, and Jon Whittle. 2022. Human
Values in Software Development Artefacts: A Case Study on Issue Discussions
in Three Android Applications. Information & Software Technology 141 (2022),
106731. https://doi.org/10.1016/j.infsof.2021.106731

[55] T. Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf. https:
//books.google.nl/books?id=gA9QDwAAQBAJ

[56] Quentin Peyras, Jean-Paul Bodeveix, Julien Brunel, and David Chemouil. 2021.
Sound Verification Procedures for Temporal Properties of Infinite-State Systems.
In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.).
Springer, 337–360. https://doi.org/10.1007/978-3-030-81688-9_16

[57] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science. IEEE Computer Society,
46–57. https://doi.org/10.1109/SFCS.1977.32

[58] Ratish J. Punnoose, Robert C. Armstrong, Matthew H. Wong, and Mayo Jackson.
2014. Survey of Existing Tools for Formal Verification. Technical Report. USDOE
National Nuclear Security Administration (NNSA). https://doi.org/10.2172/
1166644

https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/SCAM.2009.22
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-030-25540-4_15
https://doi.org/10.1007/978-3-662-49674-9_34
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1145/3377811.3380373
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1109/ICSMC.2000.884356
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-25543-5_28
https://doi.org/10.1007/978-3-030-17462-0_20
http://arxiv.org/abs/1809.09805
https://doi.org/10.1016/j.scico.2013.03.017
https://doi.org/10.1007/978-3-662-49674-9_33
https://doi.org/10.1109/ICSM.1999.792600
https://doi.org/10.1109/ICSM.1999.792600
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1007/978-3-030-80223-3_26
https://doi.org/10.1007/s10617-012-9096-8
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1145/3475716.3475770
https://doi.org/10.1016/j.infsof.2021.106731
https://books.google.nl/books?id=gA9QDwAAQBAJ
https://books.google.nl/books?id=gA9QDwAAQBAJ
https://doi.org/10.1007/978-3-030-81688-9_16
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.2172/1166644
https://doi.org/10.2172/1166644


Modelling Program Verification Tools for Software Engineers MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

[59] Cedric Richter and Heike Wehrheim. 2019. PeSCo: Predicting Sequential Combi-
nations of Verifiers. In Tools and Algorithms for the Construction and Analysis of
Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen
(Eds.). Springer, 229–233.

[60] Bat-Chen Rothenberg and Orna Grumberg. 2020. Must Fault Localization for
Program Repair. In Computer Aided Verification, Shuvendu K. Lahiri and Chao
Wang (Eds.). Springer, 658–680.

[61] Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan,
and Martin Vechev. 2021. Scalable Polyhedral Verification of Recurrent Neural
Networks. In Computer Aided Verification (CAV, Alexandra Silva and K. Rustan M.
Leino (Eds.). Springer, 225–248. https://doi.org/10.1007/978-3-030-81685-8_10

[62] Rupert Schlick, Michael Felderer, István Majzik, Roberto Nardone, Alexander
Raschke, Colin F. Snook, and Valeria Vittorini. 2018. A Proposal of an Example
and Experiments Repository to Foster Industrial Adoption of Formal Methods.
In Proceedings of the Eighth International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA) (LNCS, Vol. 11247), Tiziana
Margaria and Bernhard Steffen (Eds.). Springer, 249–272. https://doi.org/10.1007/
978-3-030-03427-6_20

[63] Abdelkader Magdy Shaaban, Christoph Schmittner, Thomas Gruber, A. Baith
Mohamed, Gerald Quirchmayr, and Erich Schikuta. 2019. Ontology-Based Model
for Automotive Security Verification and Validation. In Proceedings of the 21st
International Conference on Information Integration and Web-based Applications &
Services (iiWAS). ACM, 73–82. https://doi.org/10.1145/3366030.3366070

[64] Aleksey Shipilëv. 2013. Java Concurrency Stress (jcstress). https://github.com/
openjdk/jcstress/.

[65] Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer.
[66] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer, Salvatore

La Torre, and Gennaro Parlato. 2016. MU-CSeq 0.4: Individual Memory Location
Unwindings. In Tools and Algorithms for the Construction and Analysis of Systems,
Marsha Chechik and Jean-François Raskin (Eds.). Springer, 938–941.

[67] Federico Tomassetti and VadimZaytsev. 2020. Reflections on the Lack of Adoption
of Domain Specific Languages. In STAF Workshop Proceedings (STAF) (CEUR

Workshop Proceedings, Vol. 2707), Loli Burgueño and Lars Michael Kristensen
(Eds.). CEUR-WS.org, 85–94. http://ceur-ws.org/Vol-2707/oopslepaper5.pdf

[68] Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, and Corina S.
Păsăreanu. 2021. NNrepair: Constraint-Based Repair of Neural Network Clas-
sifiers. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, 3–25.

[69] Tom van Dijk. 2018. Oink: An Implementation and Evaluation of Modern Parity
Game Solvers. In Proceedings of the 24th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Dirk Beyer and
Marieke Huisman (Eds.), Vol. 10805. Springer, 291–308. https://doi.org/10.1007/
978-3-319-89960-2_16

[70] Jon Whittle, Maria Angela Ferrario, Will Simm, andWaqar Hussain. 2021. A Case
for Human Values in Software Engineering. IEEE Software 38, 1 (2021), 106–113.
https://doi.org/10.1109/MS.2019.2956701

[71] Freek Wiedijk. 2003. Comparing Mathematical Provers. In Proceedings of the
Second International Conference on Mathematical Knowledge Management (MKM)
(LNCS, Vol. 2594), Andrea Asperti, Bruno Buchberger, and James H. Davenport
(Eds.). Springer, 188–202. https://doi.org/10.1007/3-540-36469-2_15

[72] Avi Wigderson. 2019. Mathematics and Computation: Ideas Revolutionizing Tech-
nology and Science. Princeton University Press. https://www.math.ias.edu/avi/
book

[73] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C. Pereira,
and Peter Müller. 2021. Gobra: Modular Specification and Verification of Go
Programs. In Proceedings of the 33rd International Conference on Computer Aided
Verification (CAV) (LNCS, Vol. 12759), Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, 367–379. https://doi.org/10.1007/978-3-030-81685-8_17

[74] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzgerald. 2009.
Formal Methods: Practice and Experience. Comput. Surveys 41, 4 (2009), 19:1–
19:36. https://doi.org/10.1145/1592434.1592436

[75] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2008. SATzilla:
Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence
Research 32 (2008), 565–606. https://doi.org/10.1613/jair.2490

https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-03427-6_20
https://doi.org/10.1007/978-3-030-03427-6_20
https://doi.org/10.1145/3366030.3366070
https://github.com/openjdk/jcstress/
https://github.com/openjdk/jcstress/
http://ceur-ws.org/Vol-2707/oopslepaper5.pdf
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1007/978-3-319-89960-2_16
https://doi.org/10.1109/MS.2019.2956701
https://doi.org/10.1007/3-540-36469-2_15
https://www.math.ias.edu/avi/book
https://www.math.ias.edu/avi/book
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1613/jair.2490

	Abstract
	1 Introduction
	2 The Megamodel of PV-Levels
	3 Data set of verification tools
	3.1 Methodology
	3.2 Data set statistics

	4 Trends in PV levels
	4.1 PV0: Potential tools
	4.2 PV1: Essential tools
	4.3 PV2: Creational tools
	4.4 PV3: Property checking tools
	4.5 PV4: Specification checking tools
	4.6 PV5: Fully controlled verification tools
	4.7 PV6: Proving tools

	5 Conclusion & Future work
	5.1 Threats to validity

	References

