
Leveraging Deep Learning for Python Version
Identification
Marcus Gerhold1, Lola Solovyeva2 and Vadim Zaytsev1,2

1Formal Methods & Tools, University of Twente, Enschede, the Netherlands
2Computer Science, University of Twente, Enschede, the Netherlands

Abstract
Python, recognised for its dynamic and adaptable nature, has found widespread application in a myriad of
projects. As the language evolves, determining the Python version employed in a project becomes pivotal
to ensure compatibility and facilitate maintenance. Deep learning (DL) has emerged as a promising
tool to automate this process. In this research, we assess various DL techniques in determining the
minimum Python version required for a given project. We explore the complexities of handling Python
data and the quest for optimal text segmentation techniques to achieve high classification accuracy,
particularly for lengthy files. Our experimental results show that, although DL algorithms exhibit a
low misclassification rate with short code snippets, their performance significantly falters with long
files. This research provides valuable insights into the challenges associated with utilising programming
languages for deep learning models and suggests potential solutions for addressing these issues.

Keywords
Deep Learning, CodeBERT, Python, version identification

1. Introduction

Python continues to hold its position as one of the most widely used programming languages
of our generation. As indicated by JetBrains, Stack Overflow, and IEEE Spectrum, Python
consistently ranks among the top three programming languages preferred by developers and
claims the top spot when it comes to researchers’ preferences. Python has undergone a series
of significant evolutions and version updates since its inception [1]. The previous findings
have shown that during the breakthrough of Python 3 developers had not fully embraced
the transition to a newer version. Instead, they opted to maintain compatibility with both
Python 2 and 3, limiting themselves to a subset of the language governed by the decreasing
set of shared features between Python 2 and 3 [1]. This closes the door for compatibility
with other projects that fully transitioned to newer versions since Python does not maintain
backward compatibility [2]. Exploiting projects with an older version can lead to software
quality issues such as increased complexity of the code, security vulnerabilities, and performance
limitations. While certain Python projects indicate the necessary version for their execution,
this requirement may not always represent the actual minimum version. In practice, developers
do not always utilise the functionalities of the version they use. There is a very limited number

BENEVOL’23: The 22nd Belgium-Netherlands Software Evolution Workshop; Nijmegen, 27–28 November 2023
Envelope-Open m.gerhold@utwente.nl (M. Gerhold); o.solovyeva@student.utwente.nl (L. Solovyeva); vadim@grammarware.net
(V. Zaytsev)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). This
PDF is the authors’ own version, see the publisher’s archived version at CEUR volume 3567.

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:m.gerhold@utwente.nl
mailto:o.solovyeva@student.utwente.nl
mailto:vadim@grammarware.net
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Research pipeline for finding minimal version for a Python project using deep neural network.

of existing solutions for how to determine a minimum required version for a Python code. The
prevailing method is often a trial-and-error approach, where one relies on their prior experience
and familiarity with Python features to gauge the necessary version. Other existing solutions
involve parsing the code and then cross-referencing it with internal dictionaries.

At the same time, the increased utilisation of deep learning techniques has become more
prominent in the realm of software engineering and development. It has proven highly beneficial
in tasks such as identifying code smells [3], code summarisation [4], and detecting code clones [5].
In this research, we investigate the ability of deep learning techniques to find subtle differences
between various versions of Python language. To find a minimal required Python version for the
codebase, we propose to train a deep learning model that distinguishes between Python minor
versions, amounting to a current count of 20 distinct classes. Figure 1 demonstrates the pipeline
of our proposed approach. The first step requires splitting a Python project into individual files,
which are further divided into chunks of text. Each chunk is then fed into the classifier, yielding
the minimal version required for a successful compilation. The results for each chunk are saved
into a list. The maximum version in that list represent the minimal required version for the
chosen Python project. Our approach answers the following two research questions:

1. Which DL model provides the highest level of accuracy when classifying Python versions?
2. What text segmentation approach will effectively capture the characteristics of the file

for its accurate classification?

2. Related work

There has been limited attention and research dedicated to the problem of identifying required
Python versions for the file or a project. An existing tool, known as Vermin1, has the capability
to determine the minimum required Python version. Vermin accomplishes this by parsing code
into an abstract syntax tree and subsequently traversing it while comparing against internal
dictionaries with 3676 rules. Nevertheless, it may still produce erroneous results and is not
scalable for major projects [6]. Additionally, there is a Chrome extension named PyVerDetector,
which empowers users to select a specific Python version and validate the compatibility of
code snippets on Stack Overflow [2]. It generates error messages for any inconsistencies found,

1https://github.com/netromdk/vermin#vermin



parsing the code snippets and highlighting versioning issues, while also suggesting a list of
Python versions that can execute each code snippet. Nonetheless, PyVerDetector is limited to
recognising major Python versions and does not possess the capability to differentiate between
minor version variations. Another tool that was developed with the same limitation is PyComply,
which is a Python compliance analyser [1]. It was developed to assess and quantify the extent
to which Python 3 features are utilised, including their adoption rate and the context in which
they are applied. At the heart of PyComply lies the foundation of its grammar formalism,
which serves to define the Python syntax. Additionally, parser actions have been seamlessly
incorporated into this grammar to aid in recognising the distinctive features of Python 3.
Previously deep learning techniques were applied to Python data for various reasons. Akimova
et al. [7] created a dataset PyTraceBugs that serves the purpose of training, validating, and
assessing large-scale deep learning models with the specific objective of identifying a distinct
category of low-level bugs present in source code snippets. Furthermore, Alhefdhi et al. [8]
applied Neural Machine Translation to Python data for pseudo-code generation. Nonetheless,
there is no dataset that has pairs of Python code with their corresponding versions.

3. Corpus construction and pre-processing

There is no existing corpus that contains pairs of Python code snippets and their corresponding
version. Thus, there is a need to create a dataset, that would consist of code examples for each
of the Python versions. We use Vermin for labeling the snippets since the version provided on
PyPI2 is set for the entire project. So, for some files of the project, the version listed on PyPI is
not necessarily a minimal one.
We collected Python code samples by downloading 50 popular Python projects from PyPI,
considering each project’s multiple releases. We focused on Python files, excluding those in
other languages, and removed comments. Using a dedicated Python package, we generated
Abstract Syntax Trees (ASTs) for each file, discarding unparsable ones. The Vermin tool helped
us determine the minimal version required for the successful compilation of individual AST
nodes, aiming to find distinctive version features. Terminal nodes, typically representing
variables or numeric values, were excluded as they lack substantial version-differentiating
information. So, the resulting dataset is the mapping between code snippets, which represent
distinctive features according to Vermin, and its corresponding version.

Table 1 presents the number of instances for each class. The dataset is imbalanced since some
Python versions are more commonly used than others. This can drastically impact a training
process and classification results. To deal with this issue, we apply a widely-used approach to
synthesising new class instances called Synthetic Minority Oversampling TEchnique (SMOTE).
Since some of the classes have a minuscule number of instances, oversampling is more beneficial.

2https://pypi.org/



Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Number of Instances 1200199 192 13985 4719 16831 14151 26685 7166

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11
20741 74 514 2317 425 6538 25146 184 722 63 1792 36

Table 1
Number of instances per class of minor Python version.

LSTM TCN TextCNN BERT CodeBERT XLNet
Word2Vec
CodeBERT
XLNet

Table 2
Combination of word embeddings and classifiers. Green indicates the combination was used, whereas
red indicates that it was not.

4. Performance evaluation

As a final step of the experiment, our objective is to assess the performance of the models
employed in this study. Our primary goal is to identify a model, that is capable of effectively
categorising a code snippet with its associated minimum required version. This step holds
paramount importance, as it is crucial for a model to exhibit a high classification accuracy on a
per-code snippet basis. This significance arises from the fact that a single file can be divided
into multiple code snippets, meaning that an incorrect classification of just one instance could
result in the misclassification of the entire file.
We use some of the most common metrics to evaluate the performance of text classifiers:
accuracy, recall, precision, F1-score, and confusion matrix. We also employed balanced accuracy,
which is a variation of the standard accuracy but it takes into account the class distribution in
the dataset. For a multiclass problem, it is an average of recalls per class.
Besides evaluating the model on the test set, which consists of short snippets, we also conduct
evaluations on lengthy files that are entirely distinct from both the training and testing data,
forming an entirely separate dataset, that underwent the same collection approach as a dataset
for short code snippets. We explore various segmentation techniques to identify the most
effective approach for achieving precise file classification based on the ground truth labels. We
consider the following methods:

• First n words→ feed only the first n words into the model, where n is a hyperparameter.
• Per line→ split files into lines and feed each line into the model.
• Per part → split files into parts of length n, where n is a hyperparameter, and feed each
line into the model.

• Import statements → feed each import statement of the file into the model.
• AST nodes→ parse the file into the AST and feed the nodes into the model.



Model Accuracy Balanced Accuracy Precision Recall F1-score
Word2Vec+LSTM 0.62 0.55 0.65 0.62 0.63
Word2Vec+TCN 0.51 0.42 0.55 0.55 0.55
Word2Vec+TextCNN 0.56 0.46 0.59 0.56 0.57
CodeBERT+LSTM 0.93 0.92 0.93 0.93 0.93
CodeBERT+TCN 0.90 0.89 0.91 0.90 0.90
CodeBERT+TextCNN 0.92 0.90 0.92 0.92 0.92
CodeBERT+BERT 0.92 0.90 0.92 0.91 0.91
CodeBERT 0.92 0.89 0.92 0.92 0.92
XLNet 0.92 0.89 0.92 0.92 0.92

Table 3
Results of each model for accuracy, balanced accuracy, precision, recall, and F1-score on the test set of
short code snippets.

Figure 2: F1 score of four models per each Python version.

5. Discussion

As indicated in Table 2, nine models underwent training and evaluation on two datasets to
showcase their ability to distinguish among 20 Python versions, with the aim of identifying the
minimum version needed for a given project. In the following section, we will illuminate key
findings derived from the experimental outcomes and elucidate the challenges and constraints
associated with handling Python data.

5.1. Highlights on model behaviour

Table 3 presents the results from the evaluation, demonstrating the superiority of the LSTM
model with CodeBERT embedding, achieving 93% for each metric. Figure 2 illustrates the
F1-scores for individual classes attained by four models, two of which were top performers
while the other two performed poorly. Choosing models in such a way demonstrates the
contrast of their performance. The findings clearly indicate that replacing Word2Vec with
CodeBERT embeddings leads to noticeable improvements in all metrics. This demonstrates



that using domain-specific embeddings like CodeBERT greatly enhances the model’s ability
to classify instances accurately across all categories. CodeBERT’s strength in understanding
contextual nuances and capturing distant token relationships is key in structured text like source
code [9]. Coupled with LSTM, this model excels in handling sequential data, enabling it to retain
tokens in memory over extended periods, which is particularly beneficial for programming
languages with dependencies throughout the code [10]. An interesting finding reveals lower
validation accuracy for transformers compared to LSTM and TCN, consistent with previous
research [11]. BERT, in particular, exhibits reduced performance on smaller datasets, due to
its original training on extensive corpora. This limitation is emphasised by the scarcity of
certain Python versions in PyPI projects, resulting in a limited number of instances for specific
classes, rendering the dataset insufficient for precise transformer model training. Nevertheless,
the transformer models still achieve high accuracy. This same observation has been reported
previously, suggesting that it may be attributed to the inadequacy of the testing data [12]. Since
the model was trained on samples with distinctive version features, the test set may contain
instances that share structural and lexical similarities with the training data. This similarity
arises from consistent function and library names across versions. While not identical, training
and test instances resemble each other due to the limited source code vocabulary [13].

Figure 3: The accuracy of prediction for each class by LSTM model with CodeBERT embedding using
various text segmentation techniques listed in the categories.

5.2. Highlights on text segmentation

To compare the results of various text segmentation techniques, we chose the best-performing
model, which in this case is LSTMwith CodeBERT embedding, and used it to predict the minimal
version of the file as proposed in Figure 1. The results of the evaluation can be found in Figure 3.
We tested five techniques for segmenting the file, since BERT-like models have an input limit of
512 tokens, aiming to find the method that maximises the accurate classification.
Analysing import statements to predict the minimal Python version yields the highest accuracy
among the methods used in this study. Import statements are intuitive indicators of version
requirements, but the model’s limited awareness of all libraries and custom-developed modules



contributes to an accuracy ceiling of 30%. This also holds true for imported modules that users
may have personally developed. The model may struggle to recognise the version requirement
for importing such modules, mainly because they are infrequently encountered in the training
data, making it challenging for the model to grasp these nuances. Additionally, when rare
modules or absent import statements are encountered, the model relies solely on syntactic
features to distinguish versions. The second most successful method, truncating files to the
first 128 words, achieved 27% accuracy. This lower accuracy is due to discarding potentially
significant information found in the rest of the file, as we only analyse the beginning.
Using the model on file chunks yielded unfavorable results due to the challenge of balancing
information and minimising misclassification. Increasing the number of chunks raises the risk
of misclassifying at least one, which could lead to incorrect version assignments for the entire
file. This explains the lower accuracy in the other three methods.

5.3. Highlights on difficulties

One of the many challenges is an infinite vocabulary span, signifying endless possibilities
of potential names for identifiers [10, 13]. The corpus must be big enough to cover all the
possibilities of the variable name. Nevertheless, even in such circumstances, the model might
encounter an unfamiliar token, which can significantly undermine its overall performance.
Incorporating natural language within source code, whether in variable names, strings, print
statements, or error messages, can significantly impact the model’s performance. This aligns
with a study on code summarisation, where the presence of natural language improved summari-
sation accuracy [9]. However, in our case, it introduces unwanted noise, negatively affecting
performance. Our goal is to distinguish between Python versions by identifying unique charac-
teristics, so it is crucial to isolate these features from any noise to ensure accurate classification.
Another Python-related challenge involves the potential use of function names introduced in
newer versions as variable names in older versions, or even introducing a variable with the
same name as a function. For instance, consider the match3 function introduced in Python 3.10.
In all versions prior to 3.10, it is possible to have any identifier with the name match. This
scenario can create the misconception that the occurrence of match is equally probable across
all versions, resulting in no informational gain for the model. This surely can be prevented if
the model captures the structural difference between the introduction of the variable match and
the use of pattern matching. As mentioned earlier, transformers such as BERT utilise attention
mechanisms to comprehend token relationships. However, they have input capacity limits,
requiring us to truncate or segment files. The challenge is that improper segmentation can
disrupt unique feature structures, potentially leading to misclassification due to lost context.

6. Conclusion
We examined nine deep-learning models for Python version classification. LSTM with Code-
BERT embedding yielded the highest accuracy when applied to a dataset containing Python
features. Furthermore, import statements demonstrated to be the most effective technique to
capture the information about a required version of the file. Nevertheless, classifying lengthy

3https://docs.python.org/3/whatsnew/3.10.html



files with deep learning remains a challenging task due to certain issues, including input limita-
tions, overlap between new and old versions, the presence of natural language in code, and the
wide variability in variable names. Future improvements include masking the natural language
in the code, which will reduce the noise in the data, and identifying suitable alternatives for
unseen variable names, so the model can make more accurate predictions based on the data it
has seen. Additionally, expanding the training corpus will help to minimise the likelihood of
encountering unseen modules and libraries.

References
[1] B. A. Malloy, J. F. Power, Quantifying the Transition from Python 2 to 3: An Empirical Study of Python

Applications, in: Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2017, pp. 314–323. doi:10.1109/ESEM.2017.45.

[2] S. Yang, T. Kanda, D. Pizzolotto, D. M. German, Y. Higo, PyVerDetector: A Chrome Extension Detecting
the Python Version of Stack Overflow Code Snippets, in: Proceedings of the 31st IEEE/ACM International
Conference on Program Comprehension (ICPC), 2023, pp. 25–29. doi:10.1109/ICPC58990.2023.00013.

[3] S. Tarwani, A. Chug, Application of Deep Learning models for Code Smell Prediction, in: Proceedings of
the 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), 2022, pp. 1–5. doi:10.1109/ICRITO56286.2022.9965048.

[4] T. Zhu, Z. Li, M. Pan, C. Shi, T. Zhang, Y. Pei, X. Li, Revisiting Information Retrieval and Deep Learning
Approaches for Code Summarization, in: Proceedings of the International Conference on Intelligent Computing
and Human-Computer Interaction (ICHCI), 2023, pp. 328–329. doi:10.1109/ICSE-Companion58688.2023.
00091.

[5] G. Li, Y. Tang, X. Zhang, B. Yi, A Deep Learning Based Approach to Detect Code Clones, in: Proceedings of
the International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020, pp.
337–340. doi:10.1109/ICHCI51889.2020.00078.

[6] C. Admiraal, W. van den Brink, M. Gerhold, V. Zaytsev, C. Zubcu, Deriving Modernity Signatures of Codebases
with Static Analysis, 2023. doi:10.2139/ssrn.4536605.

[7] E. N. Akimova, A. Y. Bersenev, A. A. Deikov, K. S. Kobylkin, A. V. Konygin, I. P. Mezentsev, V. E. Misilov,
PyTraceBugs: A Large Python Code Dataset for Supervised Machine Learning in Software Defect Prediction,
in: Proceedings of the 28th Asia-Pacific Software Engineering Conference (APSEC), 2021, pp. 141–151. doi:10.
1109/APSEC53868.2021.00022.

[8] A. Alhefdhi, H. K. Dam, H. Hata, A. Ghose, Generating Pseudo-Code from Source Code Using Deep Learning,
in: Proceedings of the 25th Australasian Software Engineering Conference (ASWEC), 2018, pp. 21–25. doi:10.
1109/ASWEC.2018.00011.

[9] C. Ferretti, M. Saletta, Naturalness in Source Code Summarization. How Significant is it?, in: Proceedings
of the 31st IEEE/ACM International Conference on Program Comprehension (ICPC), 2023, pp. 125–134.
doi:10.1109/ICPC58990.2023.00027.

[10] A. A. Sawant, P. Devanbu, Naturally! How Breakthroughs in Natural Language Processing Can Dramatically
Help Developers, IEEE Software 38 (2021) 118–123. doi:10.1109/MS.2021.3086338.

[11] A. Ezen-Can, A Comparison of LSTM and BERT for Small Corpus, CoRR abs/2009.05451 (2020). URL:
https://arxiv.org/abs/2009.05451. arXiv:2009.05451.

[12] H. Yoon, Finding Unexpected Test Accuracy by Cross Validation in Machine, International Journal of Computer
Science and Network Security (IJCSNS) 21 (2021) 549–555. doi:10.22937/IJCSNS.2021.21.12.76.

[13] N. Amit, D. G. Feitelson, The Language of Programming: On the Vocabulary of Names, in: Proceedings of the
29th Asia-Pacific Software Engineering Conference (APSEC), 2022, pp. 21–30. doi:10.1109/APSEC57359.2022.
00014.

http://dx.doi.org/10.1109/ESEM.2017.45
http://dx.doi.org/10.1109/ICPC58990.2023.00013
http://dx.doi.org/10.1109/ICRITO56286.2022.9965048
http://dx.doi.org/10.1109/ICSE-Companion58688.2023.00091
http://dx.doi.org/10.1109/ICSE-Companion58688.2023.00091
http://dx.doi.org/10.1109/ICHCI51889.2020.00078
http://dx.doi.org/10.2139/ssrn.4536605
http://dx.doi.org/10.1109/APSEC53868.2021.00022
http://dx.doi.org/10.1109/APSEC53868.2021.00022
http://dx.doi.org/10.1109/ASWEC.2018.00011
http://dx.doi.org/10.1109/ASWEC.2018.00011
http://dx.doi.org/10.1109/ICPC58990.2023.00027
http://dx.doi.org/10.1109/MS.2021.3086338
https://arxiv.org/abs/2009.05451
http://arxiv.org/abs/2009.05451
http://dx.doi.org/10.22937/IJCSNS.2021.21.12.76
http://dx.doi.org/10.1109/APSEC57359.2022.00014
http://dx.doi.org/10.1109/APSEC57359.2022.00014

	1 Introduction
	2 Related work
	3 Corpus construction and pre-processing
	4 Performance evaluation
	5 Discussion
	5.1 Highlights on model behaviour
	5.2 Highlights on text segmentation
	5.3 Highlights on difficulties

	6 Conclusion

