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Abstract—The evolution of Python requires accurate version
identification to facilitate compatibility and ongoing support. We
extend previous work on deep learning models for Python version
identification, where LSTM and CodeBERT achieved a 92%
accuracy on short code snippets. We further expand these results
to larger realistic files, utilising code segmentation techniques
for varying input granularities. These techniques ranged from
per-line analysis to larger code segments. Our findings show
that while LSTM with CodeBERT embeddings maintained high
accuracy on short snippets, performance significantly drops on
longer segments, particularly in balancing information retention
and misclassification risks. Notably, import-statement analysis,
despite being the most intuitive indicator of version requirements,
reached only a 30% accuracy. This exposes the limitations of
our approach when encountering rare or user-defined modules.
The findings expose the limitations of deep learning for language
version identification, and suggest that alternative approaches
may be necessary for high accuracy on larger datasets.

Index Terms—software language identification, deep learning,
Python, CodeBERT

I. INTRODUCTION

Language identification is an innovative concept in software
engineering that addresses issues of growing importance like
code compatibility, reverse engineering of legacy code bases,
or IDE support such as syntax highlighting or code comple-
tion [1]. As a programming language continues to mature,
the role of accurate identification shifts from a beneficial
addition to a critical necessity since preciseness is essential for
facilitating maintenance, ensuring robustness, and supporting
seamless integration of diverse software systems [2].

In the landscape of evolving languages, Python stands
out due to its long history, notable version disparities, and
widespread usage [3], [4]. At the time of writing, it had 20
supported minor versions. The most significant divide between
the 2.X and 3.X versions marks a distinct evolutionary jump
in the language’s syntax and functionalities. Critically, this
makes projects developed in one of the versions incompatible
with the respective other. This incompatibility exemplifies the
decisive role of accurate language identification in maintaining
compatibility within Python’s evolving ecosystem.

Despite the need for precise identification in Python, con-
temporary approaches reveal shortcomings, particularly when
applied to real-world, diverse codebases [5]. Pragmatic tools
like Vermin [6] struggle with accurately discerning between

minor Python versions, especially in mixed-version environ-
ments, where subtle syntax and feature variations complicate
detection [7]. As software projects grow in scale, these dis-
crepancies escalate, which emphasises the need for advanced
solutions to effectively address them.

At the same time, deep learning techniques enjoy increased
successes and have become more prominent in the field of
software engineering. For instance, deep learning has proven
highly beneficial in tasks such as detecting code clones [8],
identifying code smells [9], and code summarisation [10].
Hence, a very natural conclusion involves using deep learning
for language identification; and most prominently in address-
ing Python’s minor and major version discrepancies.

This paper extends our earlier work [11] in which we
determined the most accurate deep learning model for classi-
fying Python versions in short code snippets. Our experiments
showed the combination of CodeBERT and LSTM to be the
most accurate with 92% [11]. As an intuitive progression,
we apply these findings to expanded experiments involving
complete Python files and projects. These experiments utilise
techniques of varying granularity for segmentation, encom-
passing approaches such as analysing the first n lines, import
statements, and abstract syntax tree (AST) nodes.

Contrary to expectations, our experiments show that
none of the text segmentation techniques applied in this
context achieved more than 30% accuracy. This reveals a
substantial performance gap in deep learning for Python
version identification: while effective for short snippets, the
accuracy degrades as file size grows. More importantly, this
exposes the inadequacy of current deep learning techniques
for effective language identification in complex, real-world
software environments. Simultaneously, this demands the
need for advancements in either deep learning for language
identification or the exploration of alternative techniques.

Overview of the paper. We present related work in section II
and briefly recall results of our earlier work in section III.
In section IV we provide an overview of our approach, and
expound classifiers and text segmentation techniques. Our
experimental setup is outlined in section V and results are
presented in section VI. We conclude with closing remarks
and give directions for future research in section VIII.



Fig. 1. Research pipeline for finding minimal version for a Python project using a deep neural network.

II. RELATED WORK

Software language identification [1] has been an acknowl-
edged problem at least since 1973 when Unix Research
Version 4 included a tool called file. Refining solutions to
detect dialects and versions within a language has far reaching
consequences for languages like COBOL or SQL with hun-
dreds of dialects in active simultaneous use [12]. However,
there has been limited attention and research dedicated to the
problem of identifying Python versions of a file or a project.
An existing tool, known as Vermin [6], has the capability
to determine the minimum required Python version. Vermin
accomplishes this by parsing code into an abstract syntax tree
and subsequently traversing it while comparing against internal
dictionaries with 3676 rules. Nevertheless, it may still produce
erroneous results and is not scalable for major projects [13].
Additionally, there is a Chrome extension named PyVerDetec-
tor [14], which empowers users to select a specific Python ver-
sion and validate the compatibility of code snippets on Stack
Overflow. It generates error messages for any inconsistencies
found, parsing the code snippets and highlighting versioning
issues, while also suggesting a list of Python versions that
can execute each code snippet. Nonetheless, PyVerDetector
is limited to recognising major Python versions and does not
possess the capability to differentiate between minor version
variations. Another tool that was developed with the same
limitation is PyComply [5], which is a Python compliance
analyser. It was developed to assess and quantify the extent to
which Python 3 features are utilised, including their adoption
rate and the context in which they are applied. PyComply’s
algorithm follows a grammar which defines the Python syntax
and is annotated with semantic actions recognising distinctive
features of Python 3.

Looking broader, the concept of pythonicity has been in-
vestigated on several occasions, and even its definition has
evolved far beyond the original “beautiful is better than ugly”
idea towards a collection of community-accepted idiomatic
coding conventions. Alexandru et al. compared its perception
by junior and senior developers, and found significant differ-
ences [15]. Leelaprute et al. demonstrated that pythonic code
is more efficient in terms of both memory use and execution
time [16]. Phan-udom et al. built a tool to suggest pythonic id-
ioms during code review [17]. Zhang et al. built another tool to

rewrite non-idiomatic code towards increasing its pythonicity,
and successfully submitted a number of pull requests in real
projects with it [18]. Sakulniwat et al. [19], Farooq et al. [20]
and later Admiraal et al. [13] experimented with different ways
of visualising adoption of idiomatic pythonic code over time.

Deep learning techniques have also been applied before to
Python data for various reasons. Akimova et al. [21] created a
dataset PyTraceBugs that serves the purpose of training, vali-
dating, and assessing large-scale deep learning models with the
specific objective of identifying a distinct category of low-level
bugs present in source code snippets. Furthermore, Alhefdhi et
al. [22] applied Neural Machine Translation to Python data for
pseudo-code generation. Nonetheless, there is no dataset that
has pairs of Python code with their corresponding versions.
Sandouka et al. [23] proposed a dataset of Python code with
smells, and applied machine learning to detect Long Method
and other less prominent smells. Chen et al. [24] before them
also found (with non-ML static analysis) that Long Method
and Large Class are the most popular smells. More precisely,
as reported by Vavrová et al., Long Method occurs twice as
often in Python code as it would in Java code, while some
other smells like Long Parameter List, are seven times less
likely to occur [25]. This entire body of knowledge shows
that research results from other software languages cannot be
simply assumed to be applicable to Python, which has its own
distribution of smells, its own adoption pace and strategies,
and its own ways of reaching community consensus.

III. BACKGROUND

In earlier research [11], we compared nine distinct deep
learning models to develop a classifier capable of identifying
subtle distinctions between Python versions. The objective was
to input a short Python code snippet and have the classifier
determine the minimum required version for its execution. In
this section, we contextualise our prior research in order to
justify specific technical choices made in this paper.

A. Python Classifiers

Table I demonstrates considered models and techniques for
text embedding. Our selection is based on prior successes of
deep learning in the software engineering domain [8]–[10].
Given Python’s reputation as one of the most easily readable



TABLE I
COMBINATIONS OF WORD EMBEDDINGS AND CLASSIFIERS.

Word2Vec CodeBERT XLNet
LSTM
TCN
TextCNN
BERT
CodeBERT
XLNet

programming languages, closely resembling the structure of
a natural language, models that were pre-trained on natural
language were also deemed suitable for experiments [26]. As
evident from the ticks, not all combinations were considered.
This was done to avoid potential conflicts arising from the
interplay between word embedding methods and models. For
example, the static nature of Word2Vec may conflict with
the contextualised embeddings of BERT, thereby restricting
the effectiveness of the latter. Inconsistencies can arise from
mismatched training objectives and data sources, resulting
in larger and more complex models that could impact com-
putational efficiency. Fine-tuning poses challenges, requiring
meticulous parameter tuning, and the integration of BERT’s
task-specific embeddings with Word2Vec may lead to a dilu-
tion of the former after fine-tuning.

The final models were trained on a Python dataset avail-
able at https://github.com/LolaSolovyeva/SLI that consisted of
short code snippets with their corresponding minimal version
required for their execution. An example of a short code
snippet is provided on Figure 2.

The dataset displayed a notable imbalance, primarily at-
tributed to variations in the usage frequency among different
Python versions, with certain versions being more commonly
utilised than others. The distribution of the classes and their
observations can be found in Table III. Nevertheless, the im-
balance problem was solved by synthesising new observations
for minority classes using Synthetic Minority Oversampling
TEchnique (SMOTE) [27]. Each class comprised 4,000 sam-
ples, resulting in a training dataset consisting of a total of
80,000 Python code snippets.

if transactions:
Transaction.create_transactions()

node.generate_emptyState()

S.initial_events()
while not queue.isEmpty() and clock <= targetTime:

next_e = queue.get_next_event()
clock = next_e.time
Event.execute_event(next_e)
Queue.remove_event(next_e)

print results

Fig. 2. A short code snippet example

B. Overview of the Results

The results of the study are summarised in Table II. We
demonstrated that LSTM with CodeBERT embedding yielded
the highest balanced accuracy of 92% and F1-score of 93%
when applied to a test set containing Python code snippets. The
results clearly demonstrate that substituting Word2Vec with
CodeBERT embeddings yields significant enhancements, as
measured by balanced accuracy and F1-score. This illustrates
that the utilisation of domain-specific embeddings such as
CodeBERT markedly improves performance of the model
in classifying instances across all categories. Proficiency of
CodeBERT in grasping contextual nuances and capturing
distant token relationships proves crucial in the context of
structured text, such as source code [28]. When combined
with LSTM, this model excels in processing sequential data,
allowing it to retain tokens in memory for extended periods.
This capability is particularly advantageous for programming
languages characterised by dependencies distributed through-
out the code [29].

IV. OUR APPROACH

This section presents our approach in details and provides
the overview of the pipeline illustrated in Figure 1, insights
into the used classifier and text segmentation techniques.

A. Overview

Given the satisfactory performance of the classifier on short
code snippets, our goal is to extend its application to files,
which are essentially a collection of code snippets. In addition
to employing a high-performance classifier, it is imperative
to identify an optimal text segmentation technique. This is
essential to ensure the preservation of a high level of precision
in determining the resulting minimal required version.

Figure 1 outlines the essential steps required to achieve
the ultimate objective of determining the minimum required
Python version. In the case, where we work with an entire code
base, it is necessary to partition it into individual files. The
justification lies in the dependency of the minimal required
version for a code base on the minimal required version of all
the files within that code base. Subsequently, text segmentation
is employed for each file. Considering that the most effective
model has an input limit of 512 tokens and was trained on
short code snippets, we must identify an optimal approach to
divide a file into segments. Various text segmentation methods
are proposed in subsection IV-C and assessed in section VII.
Once each file is segmented, the individual segments are input
into the classifier, providing the minimum Python version
required for each snippet’s execution. The classifier outputs
are then aggregated into a vector, with the vector’s length
corresponding to the number of segments in each file within
the code base. The ultimate minimal required Python version
for the code base is determined as the maximum version output
by the classifier in the vector.

The pipeline mirrors a standard procedure applied by de-
velopers that try to identify the language version required for
the program’s execution: Determining the required language

https://github.com/LolaSolovyeva/SLI


TABLE II
RESULTS OF EACH MODEL FOR ACCURACY, BALANCED ACCURACY, PRECISION, RECALL, F1-SCORE ON THE TEST SET OF SHORT CODE SNIPPETS [11].

Model Accuracy Balanced Accuracy Precision Recall F1-score
CodeBERT+LSTM 0.93 0.92 0.93 0.93 0.93
CodeBERT+TextCNN 0.92 0.90 0.92 0.92 0.92
CodeBERT+BERT 0.92 0.90 0.92 0.91 0.91
CodeBERT 0.92 0.89 0.92 0.92 0.92
XLNet 0.92 0.89 0.92 0.92 0.92
CodeBERT+TCN 0.90 0.89 0.91 0.90 0.90
Word2Vec+LSTM 0.62 0.55 0.65 0.62 0.63
Word2Vec+TextCNN 0.56 0.46 0.59 0.56 0.57
Word2Vec+TCN 0.51 0.42 0.55 0.55 0.55

version from a given code involves examining syntax features,
library compatibility, language constructs, deprecation warn-
ings, print statements, and third-party tool usage. Typically,
developers conduct a thorough analysis of these factors by
inspecting the code file and drawing upon their existing
knowledge. Consequently, the automated pipeline emulates
this standard approach and streamlines the process through
automation. This ensures an efficient and accurate identifica-
tion of the minimal required language version, maintaining
compatibility and adherence to language-specific features.

B. Used Classifiers

The classifier used in this study originated from earlier
research [11]. There our objective was to train a model capable
of predicting the minimum required version for a given Python
code snippet. The combination of CodeBERT and LSTM
proved to be the most accurate with 92% on short code
snippets, cf. Table II. We briefly recall both here.

a) CodeBERT [30]: It is a pre-trained model that is
designed for both programming language and natural language
processing tasks. It is capable of learning general-purpose rep-
resentations that can be applied to a wide range of downstream
NL-PL applications, such as natural language code search and
code documentation generation. CodeBERT is built with a
neural architecture that utilises the Transformer model, and it
is trained with a hybrid objective function that includes a pre-
training task for replaced token detection. This task involves
identifying suitable alternatives for tokens, which are sampled
from generators. By doing this, CodeBERT can leverage both

TABLE III
NUMBER OF INSTANCES PER VERSION FOR TRAINING A PYTHON

CLASSIFIER ON SHORT AND LONG CODE SNIPPETS.

Version 2.0 2.1 2.2 2.3 2.4 2.5
Short 1200199 192 13985 4719 16831 14151
Long 7878 598 1039 1266 3311 5099
Version 2.6 2.7
Short 26685 7166
Long 14141 3243
Version 3.0 3.1 3.2 3.3 3.4 3.5
Short 20741 74 514 2357 425 6538
Long 0 0 3122 1422 1264 2621
Version 3.6 3.7 3.8 3.9 3.10 3.11
Short 25146 184 722 63 1792 36
Long 5987 763 346 53 0 0

bimodal data of NL-PL pairs and unimodal data, where the
former provides input tokens for model training, while the
latter aids in the learning of better generators.

In our context, we use the weights from the model for the
embedding of the data. It is not a surprise that the embed-
ding demonstrated great results, since CodeBERT possesses
unique advantages that could significantly contribute to our
objectives. For example, CodeBERT exclusively utilises raw
textual information, distinguishing it from models that depend
on additional data such as Abstract Syntax Trees (ASTs)
and require the transformation of input code into ASTs. This
distinctive feature enables the application of CodeBERT to
individual lines of source code, thereby easing the constraint
associated with line-level parsability [31]. It is openly available
via the repository [32], allowing for straightforward utilisation.

b) LSTM [33]: Long Short-Term Memory is a spe-
cialised type of recurrent neural network designed to process
sequences by using memory cells and gates to manage in-
formation flow. It addresses the vanishing gradient problem,
allowing it to capture long-range dependencies and patterns
in data. LSTMs are widely used in tasks involving sequential
data, such as language modelling and time series prediction,
though their complexity has led to the development of more
advanced architectures like transformers.

In our context, LSTMs are well-suited for understanding the
intricate structures of source code, as they can learn hierarchi-
cal representations, automatically extract relevant features, and
consider the entire context of a code sequence. Various studies
in the software engineering domain show that LSTM succeeds
in source code segmentation [34], code smell prediction [9]
and code clone detection [35].

C. Text segmentation

Given that the model undergoes training on short code
snippets, it becomes imperative to partition the file into seg-
ments. The number of segments should be enough to draw
an accurate conclusion about the minimal required version
of the Python file. An extensive number of segments could
potentially cause an escalation in the probability of errors. The
following paragraphs briefly describe the methods employed
in this research.

a) First n words: This method proposes to truncate
the file to the first n words, where n is set to the number
that increases the accuracy of classification. A more detailed



investigation into the potential equivalence of n is expounded
upon in the subsequent sections.

b) Per part: This method splits the file into parts with the
length n. This approach enables us to make decisions based
on an entire file, as unique features may emerge at any point
within the file.

c) Per line: This method suggests splitting the file each
time a new line is introduced. The rationale behind this
strategy can be expounded in light of the model’s training
regimen since it is trained on short code snippets, that can be
conceptualised analogously to singular lines of code.

d) import statements: It allows a user to leverage other
existing libraries. On occasion, those libraries can serve as
strong indicators of the required Python version to compile
the file. This approach tests if the minimal version can be
solely derived from the imported libraries.

e) AST nodes: The version of a file can be changed
due to the use of a certain feature that can be architecturally
different from its previous interpretation. To capture such a
difference, a file should be divided into discrete code frag-
ments predicated upon its abstract syntax tree (AST). Hence,
this segmentation entails the extraction of textual content from
certain nodes within the file.

V. EXPERIMENTAL SETUP

This section presents the technical details behind the con-
ducted experiments. We start by describing the dataset and
techniques for its pre-processing, followed by the training
details of the classifier and strategies for the evaluation of
the performance.

A. Corpus construction and pre-processing

There is no existing corpus that would solely contain various
Python files mapped to their corresponding minimal required
version. Hence, there is a need to create a dataset, that consists
of code examples for each of the Python versions to perform
our experiments.

PyPI [36], the official third-party software repository for
Python, provides access to over 450,000 Python packages. We
leverage PyPI to extract Python projects, which are subse-
quently divided into individual files for dataset creation. We
acquired the releases of the top 50 Python projects, determined
by their popularity as of 15 May 2023. The rationale behind
obtaining all releases for each project is to ensure a broader
representation of Python versions for analysis. For example,
one of the used packages in our dataset is scipy [37]. Its
initial release is 0.10.0 and required Python 2.6 and one of
the latest releases 1.9.3 requires Python 3.8. So by obtaining
both releases of the same project, we capture an observation
for two distinct classes.

Various methods can determine the minimal required Python
version for a project or file. Utilising PyPI as our data source
grants access to a project’s JSON file, but manual input by
developers can introduce inconsistencies. This discrepancy
implies that while the Python version may be specified as
3.10, the required version could be designated as 3.8. Given

Python’s lack of backward compatibility, deploying a package
developed with version 3.10 on a 3.8 environment would
render it incompatible. In instances where compatibility is
maintained, the newly introduced features in 3.10 remain
unused, establishing 3.8 as the minimum required version.
The versions specified in the JSON file pertain to the entire
project. Given that we partition the project into discrete files,
the required version for each individual file may diverge,
particularly if none of the distinctive features of the specified
minimal version are employed. Consequently, we need to
establish a methodology for ascertaining the minimum version
requirement on a per-file basis. Vermin [6] is employed to es-
tablish per-file minimum required versions, as it distinguishes
between minor Python versions. Python files are extracted,
excluding non-Python files and removing comments to reduce
noise. Vermin is then used to obtain the minimal Python
version for each file, resulting in a dataset mapping Python
files to their respective versions.

Table III presents the number of instances for each class.
Evidently the dataset exhibits an imbalance due to variations
in the prevalence of certain Python versions over others.
This imbalance is taken into account during performance
evaluation. Furthermore, we could not capture observations
for some of the classes, so those versions are removed from
the testing phase.

B. Training details

While the training of the classifier was conducted in earlier
research [11], we expound upon its technical details to ensure
the replicability and reproducibility of the obtained results.

To generate CodeBERT embeddings, we utilised weights
from a model trained on bi-modal data sourced from Code-
SearchNet [32]. Given that BERT cannot handle text longer
than 512 tokens, the same limitation applies to CodeBERT.
Consequently, we divided the lengthy text into batches, exper-
imenting with batch sizes of 64, 128, 256, and 512 tokens.
Ultimately, we settled on a batch size of 128 tokens, striking
a balance between speed and performance accuracy. Besides
that, special tokens [CLS] and [SEP] must be included in the
input, where [CLS] indicates the start of the text and [SEP]
acts as a separator between two sentences.

LSTM uses a learning rate of 2e−5 with Adam optimiser,
employs sparse categorical cross-entropy loss, consists of two
layers with 100 nodes, uses a batch size of 64, trains for 100
epochs, and incorporates a final dense layer with a softmax
activation function. To mitigate the computational cost of
training for 100 epochs, early stopping is implemented, which
monitors the loss and stops training if no improvement is
observed after 3 epochs. The model has halted its training
after 47 epochs.

C. Performance evaluation

Our final objective is to assess the performance of the
approach employed in this study. The primary goal is to assess
the efficacy of our approach in determining the minimum
required Python version for a specified file or an entire code
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Fig. 3. F1-score for each Python version achieved with the best performing model CodeBERT+LSTM.

base. Furthermore, we explore various segmentation tech-
niques to identify the most effective approach for achieving
precise file classification based on the ground truth labels.

The procedural steps for assessing our approach are as
follows: Initially, a singular Python file is partitioned into
segments using one of the established text segmentation tech-
niques mentioned in subsection IV-C. Subsequently, the model
is defined and loaded from the saved checkpoint. Each segment
undergoes embedding with CodeBERT before being input into
our classifier. The resultant outputs are aggregated into a
vector, with dimensions equivalent to the number of segments.
The ultimate output is represented by the highest predicted
version stored within this vector. It must be the highest, since
Python lacks backward compatibility. This implies that the
minimal version in the vector would not be compatible with
later versions. We use some of the most common metrics to
evaluate the performance of text classifiers: accuracy, F1-score
and confusion matrix. Since accuracy is useful for balanced
datasets but can be misleading in imbalanced datasets, we
employ balanced accuracy, which is a variation that takes into
account the class distribution in the dataset. For a multiclass
problem, it is an average of recalls per class [38].

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(1)

Precision measures the accuracy of positive predictions,
while recall measures the ability of the classifier to identify
positive instances correctly. To find a balance between the
two metrics, we use the F1-score: the fact that it considers
false positives and false negatives, makes it more suitable for
imbalanced datasets.

VI. RESULTS

This section demonstrates the outcomes obtained through
the implementation of our methodology on the test set. Our
primary objective was to assess the feasibility of the pipeline
and identify a text segmentation method that would optimise
accuracy, which could be measured with the test set. Despite
the previous demonstrations of the outcomes achieved by the
best-performing model, we revisit these results to enhance the
overall coherence of the study.

A. Results on short code snippets

Nine distinct models were compared for accuracy, balanced
accuracy, the precision, recall, and F1-score as can be observed
from Table II. The lowest accuracy, at 51%, is seen when
TCN is combined with Word2Vec embedding. In contrast, the
highest accuracy, reaching 93%, is achieved when the LSTM
model utilises CodeBERT embedding. The same tendency
seems to appear with regard to balanced accuracy with the
lowest being 42% and highest 92% corresponding to the
previously mentioned models. It is worth noting that the LSTM
model, when coupled with CodeBERT embedding, achieved
the top scores of 93% for each metric. Conversely, the TCN
model utilising Word2Vec embedding recorded the lowest
scores of 55% across all metrics.

Figure 3 illustrates the F1-scores for individual classes
attained by CodeBERT+LSTM. Evident from the graph, the
model demonstrates proficient performance across the various
classes. However, it encounters some challenges, particularly
with versions 2.5, 3.1, and 3.7.

B. Results on lengthy files

To compare the results of various text segmentation tech-
niques, we chose the best-performing model, which in this case
is LSTM with CodeBERT embedding, and used it to predict
the minimal version of the file as proposed in Figure 1. We
start with splitting the file into segments, using each of the
techniques mentioned in subsection IV-C, which is followed
by applying the model to each of the segments. The ultimate
minimal version is determined as the highest predicted version
by the model across all segments. Additionally, it is worth

TABLE IV
PRESENTS THE RESULTS OF EACH TEXT SEGMENTATION TECHNIQUE

ACCORDING TO THE CHOSEN PERFORMANCE METRICS.

Method Accuracy F1-score Balanced Accuracy
First 128 tokens 0.27 0.23 0.25
import statements 0.30 0.28 0.29
Split in parts 0.09 0.05 0.08
AST nodes 0.09 0.05 0.08
Per line 0.07 0.04 0.05



noting that versions 3.0, 3.1, 3.10, and 3.11 were excluded
from this experiment due to insufficient availability of lengthy
files in the scraped data for those versions.

Figure 4 presents the results from parameter tuning for token
input into the model. We downsampled the dataset, acquiring
the most representative instances, to reduce computational
costs and oversampling to noise. Achieving a nearly equal
number of instances per class, we selected accuracy as the
tuning metric for the parameter. It is evident that initially, as
the number of tokens increased, so did the accuracy. However,
the highest point of 25% was achieved when using 128 tokens,
after which the accuracy began to decline. Therefore, 128
token input was used throughout the further experiments for
other text segmentation techniques that required the input
shape such as splitting the file into parts.

Table IV demonstrates obtained results across the metrics
chosen for the evaluation of the performance. It is apparent
that the most favourable outcomes were attained through
the utilisation of import statements, yielding accuracy, F1-
score, and balanced accuracy rates of 30%, 28%, and 29%,
respectively. The second favourable approach involves the
initial 128 tokens, yielding results nearly as good as those
derived from import statements. The remaining methods
exhibited a significant deficiency in performance.

Figure 5 represents the achieved accuracy per class by
applying the LSTM model with CodeBERT embedding on
lengthy files that were segmented using previously mentioned
methods. It can be seen that the most successful attempt
was achieved by applying the model to import statements
from the file reaching 30%. Even though the method did
not show the highest results per class, it did not experience
a significant drop in the accuracy of the classification in
comparison to other methods. Furthermore, the figure illus-
trates that techniques extracting the initial 128 tokens and
import statements demonstrate greater success in Python
V2 prediction. Conversely, in Python V3, dividing files by
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Fig. 4. The accuracy on lengthy files shortened to n first words, where n is
a number of tokens. We used CodeBERT embedding with the LSTM model
since it demonstrates the highest performance.

lines or segmenting them into parts of size n, where n is 128,
outperforms other methods.

We can observe that certain classes attain a notable classi-
fication accuracy, like achieving over 75% accuracy for ver-
sion 3.7 through per-line segmentation. Conversely, there are
classes, such as 3.1, that exhibit less promising outcomes, with
approximately 5% accuracy when employing file partitioning.

VII. DISCUSSION

In the following section, we illuminate key findings derived
from the experimental outcomes and elucidate the challenges
and constraints associated with handling Python data.

A. Highlights on text segmentation

Since BERT models have a maximum token limit, which
is typically 512 tokens for the original BERT architecture,
this means that we need to either truncate the file or split it
into similar segments. However, the chosen method for file
segmentation can influence the final result of its classification.
We tested five techniques for segmenting the file, aiming to
find the method that maximises the accurate classification.

Predicting the minimal Python version by analysing the
import statements in the file has proven to achieve the
highest accuracy out of all the methods used in this study. This
method seems intuitive since import statements list libraries
or modules that would carry specific version requirements.
Hence, import statements would be a clear indicator of
the minimum required version for the file, unless there are
some syntactic features present indicating a later version.
Nevertheless, even though this method is the most successful
in this study, it could not reach an accuracy higher than 30%.
This can be attributed to the fact that the model’s training data
encompasses more than just import statements, potentially
resulting in its lack of awareness regarding all libraries. This
also holds true for imported modules that users may have
personally developed. If a user has created a module named
X with specific version dependencies, the model may not
recognise that importing this module necessitates the same
version. This is likely due to the rare appearance of this module
in the training corpus, making it challenging for the model to
learn these nuances. Furthermore, there could be cases where
the file does not have any import statements, so the model
must only rely on the syntactic features that make the version
distinguishable from the others.

The second most successful method has shown to be a
simple file truncation to the first 128 words, which presented
an accuracy of 27%. A lower accuracy can be justified by
eliminating a chunk of the file that can contain crucial infor-
mation for the correct classification since we only consider the
beginning of it. Nevertheless, one could argue the reason why
this method secured the second position. Given that import
statements typically appear at the start of the file, they are part
of the first 128 words, influencing the results of the method.
Hence, this highlights the significance of drawing conclusions
about the minimal version based on import statements.
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Fig. 5. The accuracy of prediction for each class by LSTM model with CodeBERT embedding using various text segmentation techniques listed in the legend.

Utilising the model on file chunks did not yield favourable
results. The primary challenge lies in striking a balance
between offering the model sufficient information for accurate
classification and minimising the potential for misclassifica-
tion. The greater the number of chunks we input, the greater
the chances of the model misclassifying one of them. It is
sufficient for just one chunk to be misclassified to lead to an
incorrect assignment of the entire file to the wrong minimal
version. So, lower accuracy for the other three methods can
be explained by the reason above.

A noteworthy observation pertains to the superior perfor-
mance exhibited by the initial 128 tokens and import state-
ments relative to other methods in files authored in Python 2.
Conversely, a reversal of trends was observed in the context of
Python 3. This suggests that distinguishing between Python 3
versions is facilitated by the file syntax alone, while the syntax
of Python 2 presents increased complexity in differentiation.

Unfavourable results may stem from ability of Vermin
in accurately identifying the minimal required version. This
concern is particularly significant as the tool labels data as
ground truth, and inaccuracies in Vermin could propagate into
misleading model results. Bugs with 169 cases of incorrect
version identifications were previously reported [7]. A study
[13] found that a non-negligible fraction of tests fail on the
oldest and newest Python versions, indicating Vermin’s lack
of awareness of all features in those versions. This leads to
poor generalisability and introduces bias in labeled files.

B. Highlights on working with Python data

There are similarities between the analysis of natural lan-
guage and the source code since both should be comprehensive
and clear for the intended audience. This is essential because
a programming language serves as a means of communication
between the user and the machine [29]. Especially in the
case of Python, which appears to be more readable and
English-like in comparison to other programming languages.
Nevertheless, the classification of Python files still presented
multiple difficulties.

One of the many challenges is an infinite vocabulary span,
signifying endless possibilities of potential names for identi-
fiers [29], [39]. The corpus must be big enough to cover all the
possibilities of the variable name. Nevertheless, even in such
circumstances, the model might encounter an unfamiliar token,
which can significantly undermine its overall performance.

The user incorporates natural language not just when nam-
ing variables but also within string variables, print statements,
and error messages. The introduction of any form of natural
language within the source code can significantly impact the
model’s performance. This assertion finds support in a study
that concentrated on code summarisation. In their research,
the presence of natural language in the source code proved
advantageous, enhancing the accuracy of summarisation [28].
This can be explained that a condition to obtain a good
summary is to have some natural evidence in the source



code such as doc-strings, comments, variable names, etc.
Conversely, in our situation, it introduces unwanted noise,
detrimentally affecting performance. The goal is to distinguish
between the versions, a task achievable solely by identifying
unique characteristics associated with each Python version.
Therefore, it is essential to isolate these distinctive features
from any noise to ensure precise classification.

Another Python-related challenge involves the potential use
of function names introduced in newer versions as variable
names in older versions, or even introducing a variable with
the same name as a function. For instance, consider the
match [40] construct introduced in Python 3.10. In all ver-
sions prior to 3.10, it is possible to have any identifier with the
name match. This scenario can create the misconception that
the occurrence of match is equally probable across all ver-
sions, resulting in no informational gain for the model. Despite
an insufficient quantity of extensive files for the inclusion of
Python version 3.10 in the experiments, a manual inspection of
the scraped files was conducted, revealing the aforementioned
scenario. This surely can be prevented if the model captures
the structural difference between the introduction of the vari-
able match and the use of pattern matching. As mentioned
earlier, transformers rely on an attention mechanism that
allows them to grasp syntactic relationships between tokens.
However, BERT-like transformers have constraints on their
input capacity, which forces us to either truncate or divide the
file into segments. The problem here is that if the file is divided
at the wrong point, it can disrupt the integrity of the unique
feature’s structure, potentially resulting in misclassification
since the context is lost.

C. Limitations

The primary limitation in this study revolves around the
reliability of the minimal required Python version, determined
through Vermin. Given the absence of a definitive ground
truth, reliance on external tools like Vermin, which are not
infallible, becomes necessary. A previous research study [13]
that employed Vermin, provided some test cases demonstrating
its validity, noting that most tests fail for the oldest and newest
Python versions. This outcome is anticipated, considering that
Vermin’s latest update may lag behind the most recent Python
release. A noticeable gap exists in the coverage of Python 3.0,
stemming from inadequate documentation that fails to mention
major version changes. The only solid alternative known in
the context of modernity analysis is to rely on an annotated
grammar of the language [41].

Another limitation is a possible overlap between the training
and testing data. A recent research [42] has indicated that
software exhibits similarities to natural languages, implying
that source code often displays high levels of repetition and
predictability. Additional investigations have highlighted the
use of naturalness as an indicator of code quality, specifically
in identifying potentially buggy code. If the code exhibits
repetitions, some training data might be leaked to the testing
data, which would demonstrate high performance that is not
actual. Furthermore, as it was demonstrated some Python

version are more commonly used, which results in insufficient
data for the minority classes.

VIII. CONCLUSION

In this study, we explored the feasibility of the proposed
pipeline for predicting the minimum required Python version.
Additionally, we assessed five text segmentation techniques
to discover an optimal balance between providing sufficient
information to the classifier and minimising misclassification
rates. import statements emerged as the most effective
technique for capturing information about the required file
version. However, classifying extensive files using deep learn-
ing poses challenges due to issues such as input limitations,
overlap between new and old versions, the presence of natural
language in code, and the wide variability in variable names.
Even the best performing technique could not achieve accuracy
higher than 30%, which can not be considered acceptable.
Future enhancements involve masking natural language in the
code to reduce data noise and identifying suitable alternatives
for unseen variable names, enabling the model to make more
accurate predictions based on its training data.
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