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Abstract
JSON Schema schemata, as descriptive JSON �les, de�ne the expected structure of other JSON data, serving as a
valuable resource for both developers and (meta)programs. They play a crucial role in data validation, testing,
and maintaining data consistency. Since manually creating schemata for JSON can be challenging, it is common
to derive them from sample data. In this paper, we focus on the introduction of user inputs during the inference
process with the goal of reducing ambiguity and allow an algorithm to make, otherwise inconclusive, speculations
from the sample data. We describe several strategies for utilising JSON Schema features based on sample JSON
�les and how they were implemented into a Kotlin program. We evaluate our tool on �ve distinct real world
sample JSON datasets from which the results showed it is able to infer complex patterns.
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1. Introduction

The world needs formats for (semi)structured data that can be
used very easily, without going through expertise-demanding
and labour-intensive process of de�ning grammars, metamod-
els and schemata. XML (eXtensible Markup Language) [1]
occupied this niche for a while, but JSON (JavaScript Object
Notation) [2] certainly seems to be winning.

JSON Schema o�ers a means to validate, test, and maintain the consistency of JSON data [3]. It is
meant for projects that mature beyond having purely self-descriptive data chunks, and can be introduced
gradually for semi-structured data, restricting conformance only partially. However, its adoption has ben
rather slow [4]. One of the reasons for that is the time-consuming process of creating and maintaining
such schemata.
The obvious solution is automated schema inference from sample data. However, existing ap-

proaches [5, 6, 7, 6, 8, 9] cause over�tting and tend to produce structures that require further re�nement.
To address this issue, in this paper we introduce user inputs to be incorporated into the inference
process. By doing so, we reduce ambiguity and enable algorithms to make informed speculations that
would otherwise stay inconclusive. We assume that users have a deep understanding of the sample
data, and their knowledge can be leveraged to extract more information and improve the accuracy of
the schema.

In this paper, we present seven interactive strategies for harnessing the capabilities of JSON Schema
schemata, implemented in a Kotlin program, openly available via GitHub under the terms of the MIT
license [10]. We evaluate our tool using �ve real world sample JSON datasets, highlighting its strengths
and limitations.
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2. Related Work

JSON is known for its structural simplicity, but becomes more complex when JSON Schema are involved
because these schemata have a schema to follow themselves. Automated schema inference is performed
by analysing sample data, identifying basic types (strings, numbers, Booleans, objects and arrays),
patterns and constraints. In essence, it is akin to known and well-researched approaches of database
schema synthesis [11], grammatical inference [12], generation by example [13] and, to some extent,
process mining [14].
Much of the existing research focuses on the uses of inference regarding databases, since “NoSQL”

(standing for “not only SQL”) databases also permit semi-structured data. All existing approaches
we know of, work in a similar fashion: a large collection of JSON �les is processed in parallel into a
new format that the system uses; the collection is merged into one single speci�cation (details vary
per method); the combined speci�cation is then transformed into a schema and serialised as such. In
recent work, �onto� and Svoboda [15] studied multiple current approaches for JSON inference and their
limitations. They compared the works of Sevilla et al [16], Klettke et al [7], Baazizi et al [6], Cánovas
et al [8] and Frozza et al [9]. Without much repetition, we will brie�y describe how these approaches
work.

Klette et al [7] use a Structure Identi�cation Graph to combine all the JSON properties from a NoSQL
database into a single schema. They are able to detect required and optional properties and union
types, but not foreign keys (stop_id ! id). The algorithm of Baazizi et al [6] builds two versions of the
schema: one that fuses all objects together, marking �elds that lack anywhere as optional; and the other
that only combines records if they share all the same �elds. This results in a relatively small schema and
a potentially large schema, and the user is left to pick and choose to construct the �nal result. Cánovas
and Cabot [8] present an approach that generates class diagrams from JSON �les, motivated by the
need for a structure from services building or using APIs. This method traverses the input JSON data,
systematically crafting multiple class diagrams, which are then reduced into a single class diagram.

Besides white literature, there are also online tools available to infer a structure from a JSON sample
or samples. QuickType [17] is a tool that is available as a website, program, library, and IDE extension
written in TypeScript. It is able to infer a JSON Schema from JSON samples or even a single JSON �le,
but only includes descriptions (and not types) in the result and thus does not validate anything. The
JSON Schema inferrer from Saasquach [5] is an advanced library written in Java. It is able to infer from
multiple JSON samples or a single JSON �le. The resulting schema can be con�gured for di�erent drafts,
policies, formats, etc. The library has API features to expand the complexity of the inferrer. Lastly,
Liquid Technologies [18] & JsonSchema.net [19] are both online JSON Schema generator tools that
infer a JSON Schema from a single JSON sample. They both have limited options and settings and are
not open source. They are easy to use compared to the other tools mentioned, making them useful
when one needs a simple schema quickly.

3. JSON and JSON Schema

Consider the following piece of data in JSON:

{
"orderId" : "2022343-34AZEEF",
"userId" : 433,
"reason" : 1

}

This JSON �le is unclear and not self-describing. Questions may arise such as: What is orderId? Is
userId required? Why is reason a number? A schema would be able to answer these questions! For
example, a corresponding schema could look as follows:



{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {
"orderId": {

"description": "Unique identifier of the order", "type": "string"
},
"userId": {

"description": "Unique identifier of the user", "type": "string"
},
"reason": {

"description": "Reason for the return", "type": "string"
}

},
"required": ["orderId","userId","reason"]

}

Before we proceed, let us focus on one speci�c feature that we will call informational keys.
Normally, in a JSON �le, it is intended that the key is used to uniquely identify and retrieve a speci�c
value from the data. However, it is possible to use the key as an identi�er, attaching data into the key
itself. This often makes a �le smaller, but results in inconsistent keys in the �le structure. Consider the
following example.

"people" : {
"Alis" : {

"age" : 34, "email" : "alis@example.com"
}

}
...
"people" : [
{

"name": "Alis", "age": 34, "email" : "alis@example.com"
}

]

We see two ways to encode the same data: the �rst example uses an informational key "Alis" to
“name” the entire object, and in the second example, a normal array of objects/tuples is formed. In
practice, the situation might get even worse, introducing keys that follow some prede�ned structure
themselves:

{
"variants": {
"powered=false": {

"model": "minecraft:block/oak_pressure_plate"
},
"powered=true": {

"model": "minecraft:block/oak_pressure_plate_down"
}

}
}



This is a complex real world example from a JSON con�guration �le for the "blockstate" speci�cation
for an oak pressure plate within the game Minecraft [20]. This pressure plate is a block that has a state
called powered, which changes when stepped on. The key powered=true in this situation serves as
a condition for what model to display in the game when stepped on. Note that in Minecraft, blocks
can contain various states, such as directionality, waterlogging, or connections to neighbouring blocks.
These states can be combined by separating them with a comma to create more complex conditions.

It is unbelievable that we started to use JSON to escape from complex data structures, and we ended
up having to write a parser (regular, in this case) for textually encoded structures within key names! To
be able to claim a full victory, now a schema inference algorithm should, in this example, need to be
able to parse keys and detect the regular expression pattern that corresponds to possible structure.
Unfortunately, informational keys is one of the problems we do not solve in this paper.

4. Interactive Schema Inferrer

Existing algorithms of JSON Schema inference are facing challenges mentioned in previous sections. As a
result, their output schemata tend to be relatively simple compared to the full range of capabilities of the
JSON Schema speci�cation. This limitation arises from assumptions these algorithms would be required
to make. Sample data, while informative about what is allowed, cannot convey what is disallowed.
Consequently, any algorithm venturing into schema inference inevitably makes assumptions.
A prevalent assumption involves de�ning the type of a �eld. For instance, if a �eld such as foo

is always a number, the system deduces it to be exclusively numeric. This deduction rests on the
assumption that, because we have not received any other type for this �eld, only numeric are allowed
for the foo key. While this assumptions is trivial, it is far from trivial for more complex situations.
What if our JSON snippet is {"fruit-type": "apple"}? It has a string type, but the number

of allowable values for this �eld is unknown from this example. What if we analyse 1000 samples and
witness only �ve unique values of fruit-type? The input JSON �les may not encompass all possible
options, but we can make an assumption to restrict the number of valid values for fruit-type to this
minimum of �ve. This assumption works reasonably well on large data sets with little variability.

Ideally, for character names in a structure representing the plot of a story, it would be great to infer
all names from available data and restrict the enumeration to them. However, for phone numbers we
want to stick to the basic type and not impose any restrictions at all, since we know this to be a very
�exible and extensible enumeration. For country codes or country names there are certi�ed lists that
cover “all” possible values and are updated occasionally when they are o�cially and lawfully extended.
For postcodes, we could possibly produce such an enumeration, but that would be undesirable, since
it would be overly long and much more complex than a pattern that says “four digits and two capital
letters” (like postcodes in the Netherlands). For types of fruit, we cannot even make a statement generic
enough for this paper, since in one application the list of allowed values will be closed, in another
open, and in the third one (such as a game world) restricted to a prede�ned range, not necessarily fully
covered by the dataset.
This leads us towards exploring alternative approaches, such as a user-input-based method. In this

context, users could play an active role by o�ering supplementary information or clarifying ambiguous
situations. In such instances, we can communicate to the user that, based on our observation of the
given 1000 examples, we have encountered only 5 unique values, potentially suggesting an enumeration
type. The user may then verify whether the value indeed conforms to an enum type and accept the
valid values.

Our objective in this paper is to develop a JSON Schema inference program capable of handling such
scenarios, utilising a balance between under-approximation and over-approximation to aim for true
accuracy. We implement di�erent strategies to handle speci�c scenarios for the user to respond to.
These strategies will be described further in this section. We focus speci�cally on handling JSON �les
and producing JSON Schema �les, leaving out related activities such as parsing YAML �les or handling
NoSQL databases.



The operation of the Interactive goes through three distinct steps. The initial step
involves displaying the con�guration view, where the user is prompted to specify the schema version
and select the JSON �les to be used as samples. Additionally, a checkbox is provided to indicate whether
the input JSON �les are structured as an array, where each value in the array should be considered a
sample.

The second step encompasses the inference process, in which the inferrer is constructed, providing it
with all the strategies. A strategy is a method of improving an inferred schema by detecting speculations
from a sample set, and using user input to con�rm or deny speculations. It is crucial to emphasise
that the absence of user input to a�rm or reject these speculations would result in the generation
of schemata overly tailored to the sample data. A user can always deny any speculation. This is the
underlying rationale why conventional inference systems are unable to incorporate such strategies.
During the inference process, the strategies may replace the view with a form, enabling the user to
response to a speculation. Upon completion, the loading view is reinstated and the response is processed.

Lastly, when the data has been processed and the inference has been completed, the loading view is
replaced with the result view. This view presents the inferred JSON Schema as the outcome, along with
a button for copying it to the clipboard for saving purposes.
The inference part of Interactive Schema Inferrer bears some resemblance to the corresponding

component of Saasquatch [5], one of the online tools we mentioned above. Their inference system
works by combining all the sample JSONs and traversing for each key all values provided, building up a
schema from the bottom up. The library possessed the capability to build enum extractors and generic
feature classes, which were essential components for implementing user interaction functionalities.
Naturally, we made the decision to use the library rather than developing a new one from scratch.

However, the library was missing a crucial component to regarding user interaction. It was unable to
provide context about the current �eld (key), as it only provided information about the values. If the
systemwanted to use user interaction, providing context to the user about what �eld needed clari�cation
is crucial. Luckily, since this project was open source, we implemented the missing functionality and
opened a pull request to add the current JSON path to the API. After minor adjustments, it was accepted
and by now is a part of release 0.2.1.

For the graphical user interface part, we have used TornadoFX [21], a Kotlin-based JavaFX framework.
Compared to alternatives, it maintains the right balance between native integration and simplicity.

5. User Input Strategies

Each strategy is a class which implements a method called by the inferrer for each applicable �eld.
Generally, it receives the following information to infer from; the preliminary schema for this �eld, the
type of the current �eld (array, number, object, . . . ), the draft version provided, the samples
of this �eld, and the JSON path of this �eld.
JSON Schema has multiple versions, called “drafts” [3]. These specify what keywords are available

and how they should be used. Each strategy might be disabled or behave di�erently based on the
version.

https://github.com/saasquatch/json-schema-inferrer/releases/tag/0.2.1


5.1. Constants

A const is a keyword that speci�es that a �eld is always this speci�c value. This keyword is available
since draft 6 and is part of the validation vocabulary. When samples of a �eld consists of only a single
distinct value the system speculates that this �eld is a const. However, this approach proves inadequate
when confronted with limited sample sizes or, even more disadvantageously, when the sample size is
merely one. In the latter case, the system refrains from making any speculations altogether.

5.2. Enumerators

An enum is a keyword that speci�es that a �eld is restricted to a speci�c set of values. This keyword
is available since draft 4 and is part of the validation vocabulary. The system speculates similarly to
the const. The system perform a division of the distinct sample size by the total size and examines
whether this surpasses a prede�ned threshold. The determination of the threshold value emerged during
testing, and led to value of 0.2. This threshold was selected to strike a balance between minimising false
positives and maximising true negatives. It is essential to understand that the exact threshold value, is
not a critical determinant in the scope of this project. The primary objective is to achieve reasonable
coverage rather than pinpoint accuracy. Fine-tuning this threshold can be a topic for discussion and
adjustment in future iterations.

5.3. Default

The default annotation keyword speci�es that "...if a value is missing, then the value is semantically the
same as if the value was present with the default value". This keyword is available since draft 4 and is part
of the meta-data vocabulary. This strategy is unique in the sense that it does not in�uence validation
of a JSON �le. Nevertheless, it remains feasible and bene�cial to deduce a default value. Initially, the
process of speculating whether a �eld possesses a default value requires an analysis of the frequency
distribution of distinct values within the sampled data. The system would employ the empirical rule to
identify potential outliers in these frequencies. If such outliers are present, the system postulates that
the most substantial outlier represents the default value.

However, through experimentation, it became evident that the e�ectiveness of outlier detection was
not as reasonable as initially presumed. To illustrate this point, consider a scenario in which one value
occurs 800 times while another occurs only once. In such a case, traditional outlier detection methods
fail to identify the latter value as an outlier, as they tend to assume an average frequency of around 400.
Consequently, a more straightforward approach was proposed.
This approach involves assessing the frequency of each distinct value and determining if the most

frequent value appears in more than 80% of the cases. The threshold of 80% was chosen somewhat
arbitrarily, but it seemed suitable during testing. Similarly to the enum strategy, the exact threshold
value, whether it is 75%, 80%, or 85%, is not of critical importance. It should be noted that if the frequency
is 100%, we assume it to be a constant and do not process this value further.

5.4. Uniqueness

The uniqueItems keyword speci�es whether an array �eld can or cannot contain the same value
multiple times. This keyword is available since draft 4 and is part of the applicator vocabulary. By
analysing the array values of an �eld, we can speculate if the �eld can be marked with uniqueItems
when each sample of type array for a speci�c �eld does not contain the same value twice.

5.5. Contains/PrefixItems

The contains (draft 6+) and prefixItems (draft 4+) keywords specify that an array should contain
the a speci�c set of values, where prefixItems also speci�es the index. This approach is particularly
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e�ective when applied in the context of post-order traversal, as it bene�ts from the prior inference of
the schema beneath the current stage.
We use the preliminary schema to test whether the array always contains a speci�c condition.

This strategy is exclusively used when the schema encompasses multiple conditions, typically in the
form of an anyOf and/or "type": [. . . ]. If a consistent pattern emerges where the same index
consistently adheres to the same condition, the system designates it as a prefixItems. In the event
that a user declines a prefixItems inference, the program will ask whether it should be considered as
a contains instead. Here the the system provides options for minContains and maxContains.

5.6. MultipleOf

The multipleOf keyword speci�es that an numerical value should be a multiple of a given positive
number. This keyword is available since draft 4 and is part of the validation vocabulary. By �nding
the greatest common divider (GCD) of the samples, we can speculate if the �eld can be marked with
multipleOf. This only happens if the sample size and the GCD are both larger than 1.

5.7. Length

The last strategy implements keywords regarding the size or length of values. JSON Schema can add
these conditions for Numbers (Range), Arrays (Item Count), Strings (Length), and Objects (Property
Count). These keywords are available since draft 4.

This strategy waits until the inference is complete before asking the user for input. By doing so, the
system can present the user with a list of all options at once (disabled by default), rather than multiple
screens. During the inference process, the system keeps track of the minimum and maximum values
for each condition mentioned earlier. This information is used to ensure that the user cannot set an
invalid minimum or maximum value that would invalidate the samples. Additionally, for numbers the
system provides an option to specify if the range is exclusive or inclusive.

6. Evaluation

We continue with evaluating the tool by executing it on speci�c datasets and examining their results.
The evaluation procedure is as follows. The tool is executed on a designated dataset, and the resulting
schema is manually reviewed. During the inference noticeable speculations or lack of are documented.
Certain datasets originate from sources that already provide a JSON Schema, and in such instances, a
comparison will be conducted between the derived schema and the source schema. The ISI serves as
an extension of an established library, albeit with a distinct con�guration where certain pre-existing
features remain disabled intentionally. The deliberate omission of these features allows for the focus on
newly added functionalities. Resulting schemata will, for example, not contain any format — strings
with speci�c format rules, such as emails — inferences.

In the previous sections we have mentioned the use of speci�c sample �les for experimentation
and system testing purposes. In the interest of preserving the impartiality of the evaluation process,
it is important to abstain from including these sample �les during the evaluation, as the software’s
performance has likely been optimised to align with them.
The following datasets are used during the evaluation:

• Minecraft Biomes [20]
• Earthquakes data [22]
• NPM packages con�gurations, extracted from public GitHub repositories
• IMDb movies example dataset [23]
• OSI Licences [24]

https://json-schema.org/understanding-json-schema/reference/numeric#multiples


The resulting schemata are available on the GitHub page [10] as they are too large to provide in this
paper.

The selection of these �ve speci�c JSON datasets for the study was guided by several considerations:

• Real-World Examples: The datasets chosen are grounded in real-world scenarios, providing a
practical foundation for the study. This decision was motivated by the intention to ensure that the
schemata inferred are relevant and applicable in genuine operational contexts. The authenticity
of these datasets contributes to the robustness of the study outcomes.

• Diverse Use Cases: One key criterion for selection was the diversity in the utilisation of the
datasets. The chosen datasets represent a spectrum of applications, ranging from con�gurations
�les to scienti�c research data and database information. This deliberate variation in use cases
aims to expose the inference algorithms to a wide array of JSON structures.

• Variety in Data Types: The datasets exhibit signi�cant di�erences not only in their use cases
but also in the types of data they encapsulate. This intentional diversity encompasses various
data structures, �eld types, and nesting levels. This breadth in data types serves to challenge the
inference algorithms and ensures that the resulting schemata are capable of accommodating a
broad range of JSON structures.

• Study Scope and Manageability: The decision to limit the study to �ve datasets was deliberate,
stemming from a balance between comprehensiveness and practicality. A more extensive dataset
collection might not necessarily yield signi�cantly di�erent insights and could potentially overlap
with the characteristics of other samples. By constraining the dataset count, the study aims
to reduce the work while still ensuring a meaningful and focused exploration of JSON schema
inference.

6.1. Sample 1: Minecra� Biomes

The �rst sample data that will be used is data from the game Minecraft. Minecraft is a video game
made set in a world of cubes. A biome is a region in that world with its own geographical features and
properties. A biome can have di�erent grass, foliage, sky, water colours. Such information is stored as
JSON �les within the games �les.

Notes & Comparisons

The uno�cial Minecraft Wiki [25] describes the structure for custom biomes. This documentation is
used to compare the resulting schema.

The initial point of distinction lies in the lack of �elds within the particle.options object. Within
the context of the game, certain biomes feature ambient particles that traverse the screen. In the case of
sample biomes, these particles are de�ned through an id and a probability parameter. However, it
is important to note that the game provides more intricate customisation options for biomes created by
third-party developers. As these customised options are not utilised in the provided samples, they are
consequently absent from the resulting schema.
Another notable result of the schema was the detection of default values for fog_color and

water_fog_color. These attributes dictate, as a number, the colour of fog both within and out-
side of water. The system has detected for the fog_color the value 12638463 ⌅ predominates,
being employed in over 80% of instances. The inclusion of this information as a default setting will
prove advantageous for third-party developers seeking to employ a standard fog colour in their biome
implementations.
The complexity increases for the temperature_modifier �eld, which is an optional key. This

particular �eld can assume one of two values: none or frozen, with none being the default in cases where
it is omitted. Ideally, this �eld should be categorised as an enumeration encompassing these speci�c
values. However, a challenge arises due to its optional nature. Since no JSON �le would explicitly
denote none in this context, the samples featuring this �eld consistently exhibit the only other option,
frozen. Consequently, the system has mistakenly identi�ed it as a constant value.



Lastly, we turn our attention to the spawners �eld, which delineates the entities that can potentially
spawn within the con�nes of the biome. Each mob category �eld has the same structure, where the
category is monster, creature, ambient, water_creature, underground_water_creature, water_ambient,
misc, or axolotls. Ideally, the propertyNames keyword, in conjunction with additionalProperties,
should be used to establish a consistent structure encompassing all mob categories without having
to repeat the structure in the schema. However, due to the system inferring each �eld independently
without considering other related �elds, it fails to recognise the shared structure among these �elds.
This gives rise to two primary issues: �rst, the resulting schema redundantly represents the structure
multiple times, and second, users are required to provide repetitive responses to identical speculations,
which provides opportunity for inconsistencies in user input.

6.2. Sample 2: Earthquakes

The second dataset in this study comprises GeoJSON features representing earthquake locations from
the past 30 days, sourced from the United States Geological Survey. GeoJSON is a format speci�cally
designed for representing geographical locations in JSON. This dataset, initially presented as a GeoJSON
FeatureCollection, has been streamlined to exclusively include the individual Features arranged
within an array structure. One might realise that this will change the resulting structure.

The proposed schema’s architecture will be compared against the o�cial documentation provided by
the United States Geological Survey, as published on their website.

Notes & Comparisons

The resulting schema was of good quality, as it was able to detect all conditions accurately. All properties
were detected, and marked as required. Because the resulting samples only contained Features, the type
�eld was detected as an constant. In cases where data was missing, the samples provided a null value.
This resulted in the schema allowing both for these properties. Nonetheless, it is worth noting that
certain values were consistently featured in the data, and as such, the schema did not add the option for
null to allowed. It is unclear from the documentation which values are or are not allowed to be null.
Delving into the speci�cs of the properties, we encounter noteworthy detection for enums:

• The status property astutely discerns whether an event has undergone human review, signifying
this via the automatic or reviewed options. Notably, the deleted alternative, whilementioned
in documentation, is understandably absent from the samples (and thus also the resulting schema).

• The alert property informs the alert level according to the PAGER earthquake impact scale, and
was detected as an enumeration of green, yellow, and orange. The absence of the red sample
came from the apparent lack of red cases within the last 30 days in the sample data — perhaps a
fortunate twist of fate.

• The tsunami property, denoting whether an event occurred in an oceanic region, was correctly
identi�ed as an enumeration of either 1 or 0. It raises the question of why a boolean data type
was not employed for this purpose. Possibly, it was the result of how booleans are stored in their
database.

• The type property, categorising the seismic event, was detected as an enumeration of earthquake,
quarry blast, explosion, ice quake, and other event. However, the o�cial documen-
tation does not specify this property as an enumeration. This detection leaves me uncertain
whether this detection should be interpreted as a positive or negative result, as other event
implies that the given options would su�ce as an enum type.

Finally, the schema’s length strategy allowed the addition of minItems and maxItems for the
coordinates array. This would require the array to be comprised of three values (longitude, latitude,
depth).

https://json-schema.org/understanding-json-schema/reference/object.html#property-names


6.3. Sample 3: NPM Packages

The next dataset contained samples for the JavaScript package manager NPM. Information about a
package is stored in the package.json �le present in each project. This �le provides information about
the name of the project, mark what dependencies that are used, macros to run scripts, and other
con�gurations. The gathering of this sample data was done with the use of the GitHub API. Using this
API, package.json �les from public repositories were extracted and aggregated into a single JSON �le.
Due to the presence of potentially sensitive or personal information within this document, despite its
publicly accessible nature, we shall refrain from providing it.

Notes & Comparisons

The NPM package.json �le presents a formidable challenge for schema inferences. As mentioned above,
when a JSON �les use informational keys, inference becomes di�cult. Ideally, a single de�nition would
be presented in the additionalProperties. Unfortunately, the current inference system is not
implemented to detect such usage of keys, treating each �eld independently. As a consequence, the
system produced an exceedingly extensive JSON Schema, where each �eld, be it a library, dependency,
script, or con�guration choice, is speci�ed. Comparing this to the version available on SchemaStore.org,
resulting schema is appalling.
However, it does reveal numerous licenses to be an enum, which the other schema also speci�es.

The SchemaStore.org variant adopts, however, the elegant approach by utilising the enumeration an
suggestion, permitting any string value while still documenting the most prevalent licenses through
the use of the anyOf keyword.

6.4. Sample 4: IMDb Movies

The Internet Movie Database (IMDb) is an online repository dedicated to entertainment media. Its API
documentation includes a curated dataset comprising JSON responses spanning a range of queries as
an example responses. Among these queries, ’title with parameters’ movie responses were speci�cally
extracted and utilised as the primary sample data.

Notes

The sample dataset appears to be curated, as they predominantly featuring highly-rated �lms. This was
apparent in the program’s repeated speculation for ratings (such as IMDb and Rotten Tomatoes ratings) to
marked as an enum. Interestingly, when dealing with ratings, as they are stored as strings, the inference
system can therefore not infer a potential multipleOf constraint for ratings. Moreover, a substantial
portion of the movies in the dataset are English, which suggests a bias in the samples. Consequently,
the program erroneously assumed that language was a constant, a speculation I declined.
The program was able to detect Language, Genre, and Country as enums. A deeper understanding

of the back-end infrastructure could enable more informed judgements regarding the enumeration of
these attributes. For instance, if IMDb merely stores languages as key/string pairs. Noticeably, the
language data is stored as an object with two �elds: key and value, where the two �elds were always
the same. My assumption is that value would be di�erent in other languages. If this were the case, an
enum would be rather complex to implement. While it was chosen to designate them as enums, this
choice notably in�ates the schema’s size.
The program identi�ed a comical repetition in the lists of people, particularly in the cast and crew

context. In the fullCast section, the program noticed a pattern regarding job descriptions that were
listed alongside individuals. This �eld was also observed in speci�c job sections, such as directors,
where all directors were speci�ed as director. This keen observation caused the system to detect that
�eld as a possible constant.



6.5. Sample 5: OSI licenses

The Open Source Initiative (OSI) is a organisation dedicated to promoting and safeguarding the rules of
open-source software development. It maintains a comprehensive dataset of open-source licenses that
developers can use for their software. This dataset is in the form of a JSON �le, which will be used as
the last sample to test the system on. Unfortunately, we were unable to locate a schema for this �le to
use for comparison.

Notes

Each licence has an array of identi�ers that display the identi�er of the licence in at most 3 di�erent
formats (SPDX, Trove, or DEP5). The system was able to detect the 3 types of format were as a possible
enum. In the text �eld of the samples, the JSON �le speci�es the link to the licence and the type of the
�le. In this �eld the media_type property was correctly categorised into three distinct enumerations:
text/html, text/plain, and application/pdf. Similarly, the title property was categorised into three
enumerations as well: HTML, Plain Text and PDF.

However, it is noteworthy that the program did not inherently establish a direct correlation between
the media_type and title properties, even though a clear correlation exists. As said before, the
system processes each �eld independently, and is therefore lacking functionality in detecting correlations
between �elds. For instance, when media_type is identi�ed as text/html, the corresponding title
is HTML. This, and other previously mentioned, lack of correlation recognition highlights a potential
area for potential enhancement in the program’s functionality, as it could improve the accuracy of the
resulting schema.

7. Concluding Remarks

We have provided some background information about JSON and JSON Schema in section 3 and gave
an overview of existing algorithms in section 2. From the existing JSON Schema inference algorithms
we found that most focus on generating a structure from NoSQL databases [16, 26, 6, 15, 9]. Generally,
these algorithms infer one schema for each �le, and merge them afterwards. Unfortunately, these
algorithms often do not produce a JSON Schema directly, and produce guidelines, descriptions, class
diagrams, or even their own de�ned structure de�nitions. We have also described several tools, and
ended up using and extending one of them — Saasquatch [5].

Users of Interactive Schema Inferrer are prompted by the tool when it requires clari�cation, this halts
the schema synthesis process until the tool receives an answer. This can happen during the inference
or after the inference has completed. During the inference, the inference system creates a basic schema
from the primitive types of each �le. It then calls strategies for each �eld with relevant information to
improve the resulting schema. If the strategy thinks it has found an improvement, it asks and waits
for the user to respond. To improve the user experience, the design of the UI for each strategy focuses
on making it simple for the user to decline any speculation. Additionally, for strategies that would
otherwise always require user input, they are instead combined and asked at the end of the inference
process. We have explained in section 4 and section 5 how the tool is designed and which strategies
it employs to combine inference of speculations with user input in con�rming or denying them. Our
strategies were formulated by examining all the keywords in the JSON Schema and contemplating how
a program could identify situations in a set of JSON �les where a keyword would be appropriate. As
JSON Schema can be expanded with custom vocabularies, there is no limit to the potential for other
strategies.
As seen in section 6, where we have evaluated the created program on �ve distinct JSON datasets,

there were still some limitations in the inference process. The evaluation of the �ve samples revealed a
spectrum of quality, ranging from schemata deemed highly favourable to those considered signi�cantly
unfavourable from my subjective standpoint, re�ecting the varying degrees of re�nement that would
be needed. We saw that the enumeration strategy was the most successful, improving the structure for



almost all samples. In the following section of this chapter we will delve into the limitations and future
work of this study in more depth. Nevertheless, the implemented strategies have demonstrated how
they can assist a user in enhancing the resulting schema of an inference algorithm.
In the course of this study, it became apparent that JSON Schema possesses a far greater degree of

complexity than foreseen. This complexity allowed for many strategies to be created, although the list
is naturally open-ended. In particular, strategies that would organise and structure parts of the schema
look very promising as future work. However, as the system’s ability to detect structure improves, the
task of organising speci�c schema components with similar structures becomes progressively more
intricate.
Besides validation rules, a JSON Schema provides tools for documentations. The current system

does not make use of these tools as it is hard to infer documentation from samples. Given the recent
successes in applying generative arti�cial intelligence for documentation inference, we foresee that
as another possible avenue for future research. The user involvement paradigm does not have to be
broken in this case, since the tool can produce an end screen where all �elds could be provided with a
description, some of them already inferred from the dataset yet still editable.
A important part of this study is the challenge of striking a balance between user interaction and

automated inference. As a system that is supposed to make the creation of a JSON Schema easier,
excessive user involvement counteracts this. The design attempted to minimise the user interaction,
where most of the interaction is required when con�rm any speculation. This aspect has not been
validated on real end users beside the authors.

When we focus us on speci�c strategies, there are improvements to be made. For instance, in the
strategy for detecting enumerations, instead of separating the constant and enumeration strategies,
they could be merged. Since an enum with a single value is equivalent to a constant, the system could
easily replace it. An additional improvement would be to allow the user to specify if these values are
suggestions. If so, the schema would wrap the result around an anyOf with the primitive type. This
allows all values to be valid but still provides suggestions for autocompletion.

One might have noticed in the evaluation that the strategy for speculating pre�x items and contains
keywords was not detected in any of the samples. This might indicate that this strategy is not working
as well as expected. The strategy works by testing the already made schema for the current �eld, but
this sub-schema might be to complex to detect any consistent patterns. To avoid any in�uence of the
sample data on the code, the experiment was conducted in a one-time manner. While this approach
aligns with the objective of unbiased analysis, it does introduce a challenge when identifying potential
issues or errors in the code post-experiment. Future work should evaluate the implementation of this
strategy.

Ultimately, samples do not always provide a complete depiction of a structure. We observed scenarios,
such as Minecraft biomes, where programs or systems receiving JSON �les would use a default value
when a �eld is not present. This reveals that even the most advanced systems cannot infer all nuances,
and thus need to remain �exible.
As we have discussed, informational keys are di�cult to infer, but perhaps not impossible. Many

JSON �les we encountered, prioritised human readability over adhering to the expected structure of a
JSON �le. For example, dependencies inside an NPM package could have been an array of objects with
the same structure, where the name of the package would be value of a �eld. Instead, it was designed to
use an object, with the key the name of the package. Since keys are unique, this makes it clear when
there exists a duplicate dependency. It is important to recognise that the complexity of informational
keys can vary widely. It can be as basic as an enum of keys or as sophisticated as Minecraft Blockstate.
Besides all these limitations, we claim this experiment a success, and welcome the community to

inspect the tool [10] to replicate the results or use it as inspiration for other application domains. We
have demonstrated how a complex JSON Schema can be created with the help of a user, in particular, for
the context of enumerations. This research project has led us to insights about JSON Schema inference
that can hopefully be useful for future research in this domain.
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