
BNF WAS HERE:
What Have We Done About the Unnecessary Diversity of

Notation for Syntactic Definitions∗

Vadim Zaytsev
Software Analysis and Transformation Team, Centrum Wiskunde en Informatica,

Amsterdam, The Netherlands
vadim@grammarware.net

ABSTRACT
Reusing existing grammar knowledge residing in standards,
specifications and manuals for programming languages, faces
several challenges. One of the most significant of them is the
diversity of syntactic notations: without loss of generality,
we can state that every single language document uses its
own notation, which is more often than not, a dialect of the
(Extended) Backus-Naur Form. In this paper we report on
an approach to solve the diversity problem by providing a
way to quickly and concisely specify all the parameters of a
syntactic notation. The resulting “meta-ebnf” language was
used to successfully recover many grammars from sources
that use different syntactic notations.

Instead of adding another syntactic notation and arguing
about its excellence, we propose to retain the diversity and
to cope with it by formally defining syntactic notations and
using such definitions to import existing grammars to gram-
mar engineering frameworks and to export (pretty-print) ex-
isting grammars to any desired syntactic notation. This re-
sult effectively bridges programming language standards and
parser generators. The conclusions presented in the paper,
were drawn based on analysis of a large corpus of language
documents, as well as on the success of its application in
practice.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Syntax ; D.3.4 [Programming Languages]: Pro-
cessors—Grammarware

General Terms
Design; Documentation; Languages; Reliability

∗The title is a homage to an omnipresent graffiti sticker stat-
ing that “BNE WAS HERE”. The identity of BNE remains
unknown, unlike BNF which stands for Backus-Naur Form.
The second part of the title is a direct reference to [26] which
first described the problem we are solving in this paper.

Copyright ACM, 2011. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the Proceedings of SAC 2012.
SAC’12 March 26–30, 2012, Riva del Garda, Italy.
http://dx.doi.org/10.1145/2245276.2232090.

Keywords
EBNF, syntactic notations, metasyntax, grammar recovery,
language documentation

1. INTRODUCTION
In this paper we present a set of constructs and conven-

tions, the combination of which full defines an EBNF-like
syntactic notation to an extent of enabling automated gram-
mar processing. Currently formal grammars in most pro-
gramming languages standards and reference manuals are
specified using a notation specific to that one particular stan-
dard or reference. In fact, all these notations stem from the
same root, namely Backus-Naur Form [2, 16], and are tech-
nically dialects thereof. It has been noted as early as in 1977
that the diversity of notation for syntax definitions is unnec-
essary [26], but as of today little has been done to minimize
the diversity and to deal with it effectively. There was an at-
tempt in 1996 to standardize the notation at ISO [11], but
it only ended up adding yet another three dialects to the
chaos.

We have analyzed a corpus of 38 programming language
standards (ANSI, ISO, IEEE, W3C, etc), 23 grammar con-
taining publications of other kinds (non-endorsed books, sci-
entific papers, manuals) and 8 derivative grammar sources,
exhibiting in total 42 syntactic notations while defining 77
grammars (from Algol and C++ to SQL and XPath). It
quickly became apparent that a unified fully automated
grammar extractor is impossible to construct, since seman-
tic inference is impossible (e.g., “a=b,c” can define a as a
sequence of b and c in one notation and assume a terminal
symbol "," between b and c in another).

After proposing a way to define every specific syntactic
notation explicitly and concisely, we were able to automate
the rest of grammar recovery activities and build a fault tol-
erant extractor which helped us to recover 64 grammars of
industrial size (some of them containing over 300 nontermi-
nal symbols and over 700 production rules) with minimum
effort. This is a drastic improvement on prior work where ev-
ery grammar recovery initiative took considerable individual
effort, which could not be easily re-used in a similar project.
Encapsulating syntactic notation details in a concise specifi-
cation allows us to make generalizations and combines well
with advanced error recovery techniques similar to ones pre-
sented in [19] or [20].



2. MOTIVATION
Consider the following scenarios where specifying a syn-

tactic notation can be useful:

Grammar extraction from documentation.
Often information about a programming language is
available in a form of a manual or an officially approved
standard. This information can be extracted and used
in many activities involving analysis and manipulation
of source code in that language. If the syntactic nota-
tion used to define the language is either already spec-
ified or can easily be specified in such a way that the
extraction process is automated, no time is wasted on
developing an individual parser. Manual extraction is
possible as well, but also it is a process that is tedious,
error-prone and unrepeatable.

Generating correct documentation.
When grammar fragments, and potentially other parts
of language documentation, are extracted and pro-
cessed, they can evolve within a suitable environment
to improve their quality, to update contents, to co-
evolve with other artifacts, etc. After that, one wants
to produce the documentation in more or less the orig-
inal form, but using the corrected grammar as a base-
line. Some research attempts were made at providing
a general infrastructure for that [27], but none so far
has addressed the issue that the grammar in the doc-
umentation should use the original syntactic notation.
If that notation definition is available, it can be used
to pretty-print grammars automatically.

Linking documentation to compilers.
Having a specification for a syntactic notation used
by a parser generator, we can automate generation of
parser specifications from grammars. In many cases
the generated specifications will need to be enhanced
with idiosyncratic extensions, but mapping all features
of metaprogramming frameworks is a different (and
sometimes undecidable) problem which we leave out-
side the scope of this paper.

Grammar readability.
The same grammar can be easily pretty-printed in dif-
ferent syntactic notations for different users, allowing
them to focus on the content and to abstract from the
form(alism) by using the most familiar one.

Syntactic notation evolution.
Programming languages evolve over time, so do their
grammars and tools around them, but so far there was
no mechanism to aid the evolution of their syntactic
notations. This scenario can be considered as a case of
re-pretty-printing, but it does not have to stay within
those boundaries: think of the co-evolution of gram-
mars with their notations — e.g., introducing a star
repetition will automatically refactor all production
rules with explicit right or left recursion.

Documentation completion.
In many standards and specifications of programming
languages the sections describing the syntax notation
are either incomplete or lacking altogether. Having a
specification for their syntactic notation of such qual-
ity that all grammar fragments are parseable with it,

exhaustively proves that the specification is complete;
with some simple automated analyses we can check for
minimality as well. When such a specification is avail-
able, the notational description can be derived from
it.

Grammar comparison.
Various techniques exist for comparing grammars, and
they are quite powerful in a sense that they can detect
and uncover many mismatches in naming, in style, in
folding and factoring, etc. However, if we take gram-
mars of the same language (say, Java or Cobol) from
two different sources, a part of observed mismatches
will be dictated by differences in syntactic notations
used by the developers of the source grammars — they
can be pointed out only if the specifications of those
notations are available.

The abovementioned ISO standard of EBNF [11] made
an attempt to (informally) identify various constructs com-
monly encountered in syntactic notations, but was not suc-
cessful for a number of reasons, of which we list a few:

• The conclusions were drawn based on analysis of three
syntactic notations taken from definitions of Algol [2],
Cobol [12], Fortran [9], and an assumption that “most
other languages use a variant of one of these metalan-
guages” [11, p.vi]. Two syntactic notations of these
three are disregarded there for understandability and
convenience, and the third is misquoted (“::=” instead
of “:≡”). So effectively, the generalizations were made
based on one imprecise understanding of a single syn-
tactic notation.

• A reported collision of nonterminal marking metasym-
bols (angle brackets: “<” and “>”) with possible usages
of inequality signs in the language itself, is easily re-
solved by quoting terminals (which is proposed anyway
in the standard, and is relatively common in practice,
as we report below).

• Most double-character tokens like “(/” introduced by
the standard are not currently in use by any existing
syntactic notation and are therefore not intuitively un-
derstood by contemporary grammarware engineers.

• There is more acute demand for ways to specify a par-
ticular syntactic notation and for tools to cope with
their abundance (automated mapping, universal im-
port, etc) than for introducing a yet another syntactic
notation, even if it will be used in all ISO language
standards (which ISO EBNF is not).

3. DEFINING SYNTACTIC NOTATION
Inspired by the list of possible applications provided in

the previous section, and having noted the reasons for ISO
EBNF failure, we have assembled a larger set of existing lan-
guage standards and specifications for analysis, developed a
domain specific language for specifying differences between
them and used that language as a foundation for a toolkit
successfully applicable to a range of grammar recovery sce-
narios. The rest of this section is dedicated to reporting our
observations to motivate our design decision in developing
that language. It was not our direct goal to report statistical
results, but we do present them when it helps to convey our
point.



3.1 Grammar integration
When the first notation for metalinguistic formulae was

introduced around 1960 [2], there were two issues Backus
(understandably) did not consider: incorporation of gram-
mar fragments in language documentation and incorpora-
tion of textual annotations in grammar fragments. Both
issues are of little importance when the goal is to present a
handcrafted grammar as a part of manually written docu-
ment. However, in the last decades an engineering approach
is being taken in software development and language engi-
neering [15, 17, 27]. When a grammar becomes a full-fledged
software artifact, incorporated in the whole language-based
infrastructure, executable and automatically analyzable and
transformable, one needs reliable ways to integrate and to
annotate it.

In order to identify the island [22] with the grammar frag-
ment in the textual water surrounding it, we mostly need
to know two delimiters: a start grammar metasymbol, and
an end grammar metasymbol. Not all documents in our cor-
pus had those metasymbols even implicitly defined, most of
the time one needs to consider indentation and other source-
specific details: for instance, the Smalltalk standard formats
its grammar fragments in framed boxes [24].

Out of 42 syntactic notations we have examined, 30 did
not have any explicit annotations allowed within grammar
fragments, 2 had notation for one line comments, 7 for mul-
tiline comments and 3 for both. Thus, we should be able to
record a start comment metasymbol, an end comment meta-
symbol, and a start one line comment metasymbol.

3.2 Tokens
Before a grammar can be parsed as such and split into

production rules, we can see it as a stream of tokens, which
later will become identified as nonterminals, terminals and
metasymbols.

Whitespace reliability is assumed when any two separate
tokens are always separated by a space or a newline (or any
other typical whitespace character). Whitespace unreliabil-
ity is assumed when separate tokens are commonly glued
together — i.e., one should take another route of transform-
ing a character stream into a token stream.1 Strictly speak-
ing, most of the grammars found in our corpus are neither,
they linger somewhere in between. However, it turns out
that all borderline cases are handled well by other heuristics
(explained in the next sections), but the decision whether
to depart from an assumption of whitespace (un)reliability
should come from a human grammar engineer.

The whole software language theory is mostly based on
context free grammars, with some exceptions. We have spot-
ted at least two context dependent kinds of notational rules:
line continuations and masked terminals. A line continua-
tion metasymbol is especially important for syntactic nota-
tions that rely on formatting and indentation: when a line is
physically too long, one has to use a newline character, but it
can be agreed that using it in a specific context has no mean-
ing other than technical. For instance, the Fortran standard
uses a halmos (�) at the end of the unfinished line and a
halmos at the beginning of the next line to denote that the

1The most efficient technique we have found is to assume
token boundaries at places where an alphanumeric character
is followed by a non-alphanumeric one, or vice versa (i.e.,
“abc?def” should be seen as a sequence of “abc”, “?”, “def”).

newline between them should be neglected [9].2 By masked
terminals we mean any other token sequences that should
be treated as a single token (which later becomes a terminal
symbol, hence the name). For instance, the Eiffel standard
always uses double quote notation for non-alphanumeric ter-
minals (e.g., “","”), unless the terminal is a double quote,
in which case it is “’"’” [13].

Similar to a global decision of whitespace (un)reliability,
mentioned above, an important design decision for a syn-
tactic notation is indentation. 8 sources from our corpus
require indentation information for successful grammar re-
covery (most use it to separate right hand side alternatives
in production rules, see below), another 16 make it possible
to extract information from indentation, and 18 do not rely
on any indented notation agreements. In the case where in-
dentation is considered, a tabulation metasymbol needs to
be specified (usually it consists of 4 or 8 spaces, rarely of a
true horizontal tabulation character).

3.3 Production rules
In order to map a token stream to a list of grammar pro-

duction rules, we reuse defining symbol, terminator symbol
and definition separator symbol from ISO EBNF [11]. The
rest of this section briefly explains our view on them, some
extensions we propose, as well as the syntactic notation de-
tails for production labels.

A terminator metasymbol is used to signal the end of a
production rule, or possibly a boundary between two pro-
duction rules. Most (20) of syntactic notations from our
corpus have an empty line or just a newline as a terminator
metasymbol, 12 use a semicolon (“;”), 5 use a dot (“.”), 1
use a comma (“,”) and 5 have no reliably identified termi-
nator metasymbol.3 We also found the need to specify a
possible terminator metasymbol for some more lax syntactic
notations that have a terminator convention that is utilized
inconsistently.

A defining metasymbol is always placed between a left
hand side (a nonterminal being defined) and a right hand
side (a defining expression) of a production rule. All syntac-
tic notations from our corpus have a defining metasymbol:
the most commonly found ones are “::=” or “:≡” (15 times),
followed by “:” or “::” (12), “=” (10) and an arrow (“->”, “>”
or“→”, 5 times in total). The most exotic defining metasym-

bol is “,” from the Eiffel standard [13]. Generally speaking,
both terminator and defining metasymbols are not necessary
for successful grammar recovery. Either is enough, and sta-
tistical analysis can be used to infer hypotheses about them
even if none are known. However, specifying them explicitly
helps with additional verification.

At least 4 sources from our corpus have a special meta-
symbol that was not anticipated by ISO EBNF: we call it a
multiple defining metasymbol. It usually looks like an ordi-
nary defining metasymbol with“one of”or“oneof”appended
to it, and it changes the semantics of the following symbols:
they are to be treated as a choice, not as a sequence. For
example, if “a : b c;” defines a as b followed by c, “a : one

2It should be noted here that the Fortran standard uses this
notation inconsistently and utilizes other line continuation
notations as well, without explaining them.
3When the numbers do not sum up to 42, it means some
sources had multiple options possible. In this particular
case, ISO EBNF §8.1 allowed for either “;” or “.” as a
terminator metasymbol [11, p.8].



of b c;” defines a as either b or c.
A definition separator metasymbol separates multiple def-

initions of a nonterminal: in fact, it designates a top level
choice. We found out that it is either based on indentation
(in 7 cases), or is represented by a vertical bar (“|”, 31 cases)
and in that case equal to a metasymbol for inner choice (if
any). Very rare exceptions look either like a bar (“/”, “!”)
or like textual disjunction (“or”, “or”).

Very rarely — in fact, we encountered it only once with
SDF [7] — the “left” hand side and the “right” one are
swapped, and productions start with a defining expression,
followed by a defining metasymbol, and then by a nontermi-
nal being defined. Hence, we need to specify the definition
direction of the syntactic notation.

Most (34) of the sources from our corpus do not name
their productions. However, there are 4 that give every pro-
duction rule a unique name and 4 that have names in some
of their productions. Hence, we need an (optional) start la-
bel metasymbol and an end label metasymbol to record the
notation for labeling production rules. During grammar re-
covery production labels can be preserved or disregarded.

3.4 Nonterminal symbols
In general, any symbol in the grammar can be compre-

hended as having one of three roles: a terminal symbol, a
nonterminal symbol or a metasymbol. During the process
of grammar recovery, one more class is possible for unknown
symbol type, and by the end of extraction all unknown sym-
bols should either assume one of the basic three roles, or be
deemed negligible and disregarded. This section will concern
itself with nonterminal symbols, or nonterminals.

In order to identify nonterminals in context, we can use
a start nonterminal metasymbol and an end nonterminal
metasymbol : most (33) of syntactic notations that we have
seen do not use them, but adopt a special naming convention
instead that can be used to tell nonterminals from terminals.
8 remaining syntactic notations use angle brackets (“〈” and
“〉”), plus the Smalltalk standard uses double angle brackets,
single angle brackets or no brackets at all to mark different
kinds of nonterminals [24]. Another useful assumption in
identifying nonterminals during grammar recovery is creat-
ing a dictionary with all left hand sides: if a particular token
occurs in that dictionary, we have high confidence that it is
indeed a reference to that nonterminal — hence, we speak
of a nonterminal if defined convention.

The allowed character set for nonterminal names can vary
greatly: 14 syntactic notations that we have examined, al-
low spaces, 8 allow dashes (“-”), 5 allow underscores (“_”)
and 1 (LLL [18]) allows slashes (“/”). Of course, allowing,
say, a space to be a part of a nonterminal name implies ei-
ther explicit start and end metasymbols as discussed above,
or concatenation metasymbol that we will discuss below. In
fact, some characters can be allowed (and extensively used)
in nonterminal names, but not allowed (or not occurring)
in terminal names, and recording this convention explicitly
can be of great help in grammar recovery. Hence, we speak
of characters a nonterminal name may contain, and of char-
acters that we can conclude a nonterminal if contains.

Naming conventions can be much more sophisticated than
just allowing extra characters in the names. In modern stan-
dards nonterminals are distinguished by printing them in
different color (e.g., in blue in the Eiffel standard [13]), font
variant (e.g., italics in 8 different syntactic notations), etc.

Case is of particular importance: in 10 syntactic notations
in our corpus camelcase, mixed case and capitalized tokens
are exclusively nonterminals, in 7 notations lowercase, and
in 2 cases uppercase ones.

Built-in nonterminals can be used in a syntactic notation
as predefined nonterminals or constructions like an empty
sequence notation, that in the formal language theory is tra-
ditionally written as ε, λ, or ε. For instance, the Scheme
standard denotes it as “〈empty〉” [8]. Special entities that
are not necessarily like nonterminals in some aspects, can
have a special notation for them, usually with a start spe-
cial metasymbol and an end special metasymbol — we have
encountered them at least 18 times in our corpus. Special
entities can define anything that was not covered by regular
features provided by a syntactic notation, examples include
“any character except ...” (many occurrences), “implemen-
tation defined ...” [24], “as specified by standard ...” [1].

3.5 Terminal symbols
Just like nonterminals, terminals also need to be identi-

fied in context, which is quite popularly done with a start
terminal metasymbol and an end terminal metasymbol : 12
of syntactic notations that we have seen used double quotes,
6 used single quotes and 2 had both, leaving 22 syntactic no-
tations without explicitly marked terminal symbols. Similar
to a “nonterminal if defined” convention advocated in the
previous section, we found it reasonable and profitable to
have a terminal if undefined convention that can rid us au-
tomatically of many typesetting mistakes typically encoun-
tered during grammar recovery. Even when that convention
is not in use, any tokens that contain characters that are not
allowed in nonterminal names and that cannot be identified
as metasymbols, are bound to become terminals.

Naming conventions also are common practice for termi-
nals. In modern standards terminals are distinguished by
printing them in different color (e.g., in green in the Eiffel
standard [13]), font face (e.g., fixed width in the C++ stan-
dards [10]), font variant (e.g., bold in 6 different syntactic
notations), etc. Depending on the language being defined,
case can be of importance: in 6 syntactic notations in our
corpus uppercase tokens were exclusively nonterminals, in
2 cases (Eiffel [13] and Algol [2]) lowercase and in 1 case
(Algol [23]) camelcase and capitalized ones.

Quality of some grammars, especially those found in
sources with unreliable whitespace, can be increased sub-
stantially by an agreement to glue consecutive terminals:
this heuristic is damaging only to constructs like “... ":"

"(" ... ")" ...”, which are uncommon and if present, can be
fixed with post-extraction grammar transformation.

3.6 Symbol combinations
Just like with boundaries between consecutive tokens,

boundaries between consecutive symbols can also be an is-
sue, especially if the syntactic notation lacks a set of start
and end metasymbols for terminals and nonterminals. The
ISO standard for EBNF [11] and other sources, for a total of
5 syntactic notations, propose to have an explicit concate-
nation metasymbol that must be placed between any two
adjacent symbols (all of them agree on a comma, but this is
purely coincidental). Usually the concatenation metasymbol
is not placed immediately before or after other metasymbols.

Extreme cases of unreliable whitespace, combined with
inability to distinguish font variants during grammar re-



covery, can lead to situations when several consecutive
symbols are perceived to be glued together and appear
to be one symbol. In that case decomposition of sym-
bols is necessary, which is a heuristic technique used to
propose hypotheses about a suspicious symbol (e.g., an
undefined nonterminal) being split into several symbols
that make more sense in context. For example, a defini-
tion of block_statement copied from the Ada 2005 stan-
dard [14, p.683] contains declaredeclarative_part and
handled_sequence_of_statementsend, in both instances
newlines being processed incorrectly, leading to terminals
declare and end being erroneously concatenated with the
names of valid nonterminals defined elsewhere. Similar prob-
lems occur in abundance in the C++ standard [10].

When any kind of grouping symbols is possible, there may
be a need for an inner choice metasymbol. However, it can
be present in a syntactic notation and not be equal to a
definition separator metasymbol that we mentioned above.
For instance, the Java specification [6] uses indentation for
top choice and a bar (“|”) for inner choice.

Denoting optionality of symbols is a rather popular simpli-
fying notation: 13 of the syntactic notations from our corpus
preferred a postfix optionality metasymbol (6 used “opt” and
7 used “?”) and only 6 did not use any. Of the remaining
24, 20 used square brackets as a start optionality metasymbol
and an end optionality metasymbol, one used round brack-
ets, one — curly brackets and two (both from the EBNF
standard [11]) used “(/” and “/)”.

Similarly, two kinds of repetition are commonly encoun-
tered in syntactic notations: a “star” (Kleene star, a transi-
tive reflexive closure, zero or more) and a“plus” (a transitive
closure, one or more). A star is more common: 10 syntac-
tic notations from our corpus used a postfix star repetition
metasymbol (variations of *, ?, ∗, etc), 14 used curly brack-
ets for a start star repetition metasymbol and an end star
repetition metasymbol, 2 (both from ISO EBNF [11]) used
“(:” and “:)” and 13 did not have any. The remaining three
used “{” and “}...” [23], “{” and “...}” [4], and “[” and “]...”
[9]. A plus is only present in 14 syntactic notations, out
of which 8 have “+” a postfix plus repetition metasymbol, 2
feature “. . . ” in the same role, 3 have “{” and “}+” as a start
plus repetition metasymbol and an end plus repetition meta-
symbol and 1 has “{” and “...}+” [4]. We mention all this in
such detail to signify the diversity and the seeming random-
ness of choice for notation — the main reasons why syntactic
notation cannot be inferred automatically and why we have
to find means to specify it formally and unambiguously.

Very few relatively modern syntactic notations feature
“separator lists”: a repetition where a special separator sym-
bol is inserted between any two adjacent list items. In our
corpus we have only encountered it three times: as “{” and
“}+” as a start plus separator list metasymbol and an end
plus separator list metasymbol in LLL [18] and SDF [7], and
as “{” and “...}+” in Eiffel [13]. (Same three instances have
a similar notation for a star variant of a separator list).

A start group metasymbol and an end group metasymbol
are used to denote a subexpression that is effectively an un-
named nonterminal unfolded in place. This notation is quite
extensively used by sources that use postfix optionality and
repetition, or have many inner choices. Groups are mostly
(18 syntactic notations from the corpus) denoted by round
brackets, but square brackets were found in one wiki nota-
tion [21] and curly brackets are used in the SQL standard [1].

We found an exception metasymbol at least 6 times in
our corpus: it is usually infix and means that a-b should
be possible to parse as a but impossible to parse with b.
The semantics of exception is hard to define and to combine
properly with other constructs, which explains its lack of
popularity.

4. CONCLUSION AND FUTURE WORK
As it was stated in the introduction, we have analyzed

38 standards, 23 other grammar containing publications
and 8 derivative grammar sources, exhibiting in total 42
syntactic notations while defining 77 grammars of Ada, Al-
gol, ANTLR, Basic, BNF, C, C++, C#, Dart, EBNF, Eif-
fel, Fortran, Java, JavaScript, LLL, Modula, Pascal, Rascal,
Scala, Scheme, SDF, Smalltalk, SQL, Wiki, WSN, XPath,
and YACC.

We have proposed the way to define any syntactic notation
explicitly by specifying:

Confix constructs (start & end metasymbols):
grammar, comment, label, nonterminal, terminal,
special, group, optionality, star repetition, plus repe-
tition, star separator list, plus separator list

Infix metasymbols:
terminator, possible terminator, defining, multiple
defining, definition separator, concatenation, inner
choice, exception

Postfix metasymbols:
optionality, star repetition, plus repetition

Prefix metasymbols:
start one line comment

Other metasymbols:
line continuation, tabulation, empty sequence

Conventions:
whitespace reliability, indentation, definition direction,
nonterminal if defined, nonterminal if contains, glue
consecutive terminals, decomposition of symbols, up-
percase nonterminals, lowercase nonterminals, camel-
case nonterminals, mixed case nonterminals, uppercase
terminals, lowercase terminals, camelcase terminals,
mixed case terminals

Predefined sets:
masked terminals, nonterminals may contain, built-in
nonterminals

As a direct result, we were able to automate the rest of
grammar recovery activities and build a fault tolerant ex-
tractor which helped us to recover 64 grammars of industrial
size with minimum effort.4 11 of the remaining grammars
are in a form less suitable for machine processing (e.g., badly
OCR-ed or only in hard copy) and present technical difficul-
ties that we leave out of scope of this report. Only one gram-
mar, namely the SDF [7] definition of SDF [25], presents a
challenge, and we reserve it for future work. One more

4All recovered grammars, all definitions of their syntactic
notations, as well as the Grammar Hunter tool in its Python
and Rascal incarnations are openly released via a comple-
mentary website: http://grammarware.net/did/hunter.



syntactic notation, namely TXL [5], was excluded from con-
sideration altogether because its notation was too far from
any EBNF dialect.

Grammar recovery as performed by Grammar Hunter is
largely automatic, with its robustness assisted by the spec-
ification of a syntactic notation (a few user provided indi-
cations). This implies that recovering future versions of the
same grammars or grammars of other languages using the
same notations as some of these, becomes a matter of ob-
taining access to them and re-running Grammar Hunter.

One of the future research directions for us is to find a
generic syntactic notation, which will be extensible on a
meta-level: i.e., it will be possible to stay within the notation
while introducing new constructs of metasyntactic sugar or
even completely new ones. The particular challenge here is
that most notations that stem from introducing arbitrary
extensions, turn out to be too powerful (e.g., the exception
metasymbol allows to go beyond context-free grammars and
define undecidable loops; introduction of meta-identifiers
can take us to Turing complete van Wijngaarden grammars,
etc).

Identifying grammar fragments related to one specific
topic (i.e., statements) is commonly encountered in language
documents, but as of now, lacks complete technological sup-
port because few grammar manipulation frameworks have
sufficiently advanced modularity. However, we should con-
sider this functionality in our future work and deeply inves-
tigate its implementability.

Another possible research direction based on our result
concerns detailed analysis of notation for syntactic defini-
tions from the expressivity perspective. Currently neither
grammar classes based on Chomsky hierarchy nor parsing
technology driven grammar classes like LL(k) or LALR(1)
have any correspondence with classes of grammars that are
possible to define with a given metasyntax. This misalign-
ment leads to excessive additional checks the parser gen-
erator must perform in order to report various errors and
warnings, which still does not halt the existence of ambigu-
ous grammars (cf. [3]). Without research it is impossible to
even predict whether creating a syntactic notation that can
only be used to define, say, GLL grammars, is reachable,
feasible and useful.

5. REFERENCES
[1] ANSI/ISO/IEC 9075-1:1999(E). Information Systems.

Database Language SQL. Part 1: Framework, 1999.

[2] J. W. Backus. The Syntax and Semantics of the
Proposed International Algebraic Language of the
Zurich ACM-GAMM Conference. In S. de Picciotto,
editor, ICIP, pages 125–131, Unesco, Paris, 1960.

[3] H. J. S. Basten. Tracking Down the Origins of
Ambiguity in Context-free Grammars. In ICTAC’10,
pages 76–90, Berlin, Heidelberg, 2010. Springer.

[4] E. Bezault. Eiffel: The Syntax.
http://www.gobosoft.com/eiffel/syntax, 1999.

[5] T. R. Dean, J. R. Cordy, A. J. Malton, and K. A.
Schneider. Grammar Programming in TXL. In
SCAM’02. IEEE, 2002.

[6] J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The
Java Language Specification. Addison-Wesley, third
edition, 2005. http://java.sun.com/docs/books/jls.

[7] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers.

The Syntax Definition Formalism SDF. Reference
Manual. ACM SIGPLAN Notices, 24(11):43–75, 1989.

[8] IEEE Std 1178–1990. IEEE Standard for the Scheme
Programming Language, Approved December 10, 1990.
Reaffirmed December 12, 1995.

[9] ISO 1539:1980, ANSI X3J3/90.4. Information
Technology. Programming Languages. Fortran, 1980.

[10] ISO/IEC 14882:1998(E). Information Technology.
Programming Languages. C++, 1998.

[11] ISO/IEC 14977:1996(E). Information Technology.
Syntactic Metalanguage. Extended BNF. Available at
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf.

[12] ISO/IEC 1989:1985. Information Technology.
Programming Languages. COBOL, 1985.

[13] ISO/IEC 25436:2006(E). Information Technology.
Eiffel: Analysis, Design and Programming Language,
first edition, 2006.

[14] ISO/IEC 8652/1995(E), Ed. 3. Information
technology. Programming Languages. Ada.
Consolidated Ada Reference Manual, 2006.

[15] P. Klint, R. Lämmel, and C. Verhoef. Toward an
Engineering Discipline for Grammarware. ACM
ToSEM, 14(3):331–380, 2005.

[16] D. E. Knuth. Backus Normal Form vs. Backus Naur
Form. Commun. ACM, 7(12):735–736, 1964.

[17] D. E. Knuth. Literate Programming. The Computer
Journal, 27(2):97–111, 1984.

[18] J. Kort, R. Lämmel, and C. Verhoef. The Grammar
Deployment Kit. In M. G. J. van den Brand and
R. Lämmel, editors, ENTCS 65. Elsevier, 2002.

[19] R. Lämmel and C. Verhoef. Semi-automatic Grammar
Recovery. Software: Practice & Experience,
31(15):1395–1438, December 2001.

[20] R. Lämmel and V. Zaytsev. Recovering Grammar
Relationships for the Java Language Specification.
Software Quality Journal, 19(2):333–378, March 2011.

[21] MediaWiki. Markup spec. BNF. Noparse block.
http://www.mediawiki.org/wiki/Markup_spec/BNF/

Noparse-block, 2010.

[22] L. Moonen. Generating Robust Parsers using Island
Grammars. In WCRE’01, pages 13–22. IEEE
Computer Society Press, Oct. 2001.

[23] V. M. Pentkovsky. Elbrus Autocode. El-76. Language
Design Principles and User Manual. Nauka, 1982.

[24] Y.-P. Shan, G. Krasner, B. Schuchardt, and
R. DeNatale. NCITS J20 DRAFT of ANSI Smalltalk
Standard, Revision 1.9, December 1997. Available at
http://wiki.squeak.org/squeak/uploads/

standard_v1_9-indexed.pdf.

[25] J. Vinju, G. R. Economopoulos, and P. Klint. SDF2
defined in SDF. Available in the sdf-library of
http://www.meta-environment.org, 2006–2010.

[26] N. Wirth. What Can We Do about the Unnecessary
Diversity of Notation for Syntactic Definitions?
Communications of the ACM, 20(11):822–823, 1977.

[27] V. Zaytsev and R. Lämmel. A Unified Format for
Language Documents. In B. Malloy, S. Staab, and
M. G. J. van den Brand, editors, SLE’10, LNCS 6563,
pages 206–225, Berlin, Heidelberg, 2011. Springer.


